Reusable Server Kernel
Programmer's Guide and
Reference

Version 3 Release 1.0

SC24-5964-00

Reusable Server Kernel
Programmer's Guide and
Reference

Version 3 Release 1.0

SC24-5964-00

Note:

Before using this information and the product it supports, read the general information under “Notices” on page 503.

First Edition (February 2001)

This edition applies to Version 3, Release 1, Modification 0 of IBM® z/VM (product number 5654-A17) and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface Xi
Who This Book is For Xi
What You Should Know Before Reading This Book Xi
What This Book Contains Xi
Where to Find More Information Xiii
How to Send Your Commentsto IBM Xiii
First Edition for z/VM® (February 2001) Xiii
Chapter 1. Basic Concepts 1
Motivation 1
Overall Server Organization 4
Jobs of the Mainline 6
More About Services 6
Anything Else? 8
Calling The Entry Points 8
Building a Server Module 10
Setup At AGlance 10
Other Considerations 11
Chapter 2. Connectivity and Line Drivers 13
The Service Instance's View 14
TCP/IP Considerations 18
UDP/IP Considerations 19
IUCV Considerations 20
APPC/VM Considerations 21
Spool Considerations 22
MSG/SMSG Considerations 23
Virtual Console Considerations 24
Subcom Considerations 25
Line Driver Commands 25
More Detail on Line Drivers 26
Authorization 29
Chapter 3. DASD Management 31
DASD Subsystem Overview 31
LiImits 32
Modes of Operation 33
Programming Interfaces 33
Administrator and Operator Considerations 33
Chapter 4. File Caching 37
Managing the Setof Caches, 37
File Operations 38
Transformations 38
Example 39
Stale Data 39
Cache Utilization 39
Constraints L 40
Chapter 5. Authorization 41

© Copyright IBM Corp. 1999, 2001 i

iv

OVEIVIEW o o 41

Entry Points 42
Naming Conventions and Other Limits 42
Group Authorization Considerations 43
Persistent Storage of Authorization Data 43
Parallelism 46
Administrative Commands 46
Other Services' Use of Authorization 46
Chapter 6. Enrollment 49
Programming Interfaces 50
Operator Commands 51
Chapter 7. Indexing by Prefixes 53
OVEIVIEW 53
Example 53
Index Sharing 54
No Record Deletion? 54
Commands 54
Chapter 8. Anchors 55
Chapter 9. Memory Management 57
Chapter 10. Worker Machines 59
Functional Overview 59
Server Configuration Considerations 60
Distributing Worker Machines 61
API Details e 61
The Worker C-Block 62
Operator Commands 63
Writing a Worker Machine Program 64
Chapter 11. Run-Time Environment 65
Chapter 12. Initialization and Profiles 71
Flow of Control 71
Execution Conditions within RSKMAIN 72
PROFILE RSK e 72
Starting and Stopping 74
Configuration Parameters 74
Storage Group Definition File oo 78
User ID Mapping Facility 78
Chapter 13. Monitor Data 79
Monitor Buffer Organization, 80
Kernel Row 80
Service ROW 81
Line Driver ROW 81
Authorization Row 81
Storage Group Row 82
Memory ROW 82
Enrollment Row 83
Cache ROW 83

z/VM V3R1.0 RSK Programmer's Guide and Reference

Trie ROW 83

Worker ROW e 84
Chapter 14. Command Descriptions 85
APPC LIST e 87
APPC QUERY e 88
APPC REPORT 89
APPC START . . . e 90
APPC STOP e 92
AUTH CRECLASS e 93
AUTH CREOBJECT e 94
AUTH DELCLASS e 95
AUTH DELOBJECT e 96
AUTH DELUSER e 97
AUTH LISTCLASS 98
AUTH LISTOBJECT e 99
AUTH MODCLASS e 101
AUTH PERMIT e 102
AUTH QOBJECT 103
AUTH RELOAD e 104
BKWENRCP e 105
CACHE CREATE 106
CACHE DELETE 107
CACHE LIST 108
CMS . o 109
CONFIG AUT_CACHE s, 110
CONFIG AUT_DATA 1 e 111
CONFIG AUT_DATA 2 s 112
CONFIG AUT_FREE s, 113
CONFIG AUT_INDEX_ 1 s, 114
CONFIG AUT_INDEX_2 e 115
CONFIG AUT_LOCATION e, 116
CONFIG AUT_LOG e, 117
CONFIG AUTHCHECK_AUTH 118
CONFIG AUTHCHECK_CACHE 119
CONFIG AUTHCHECK_CMS e, 120
CONFIG AUTHCHECK_CONFIG 121
CONFIG AUTHCHECK_CP s, 122
CONFIG AUTHCHECK_ENROLL 123
CONFIG AUTHCHECK_LD e, 124
CONFIG AUTHCHECK_MONITOR e, 125
CONFIG AUTHCHECK_SERVER 126
CONFIG AUTHCHECK_SGP 127
CONFIG AUTHCHECK_TRIE 128
CONFIG AUTHCHECK _USERID 129
CONFIG AUTHCHECK WORKER 130
CONFIG MEM_MAXFREE 131
CONFIG MON_KERNEL_ROWS 132
CONFIG MON_PRODUCT_ID s, 133
CONFIG MON_USER_SIZE 134
CONFIG MSG_NOHDR e 135
CONFIG NOMAP_APPC e 136
CONFIG NOMAP_IUCV e, 137
CONFIG NOMAP_MSG, 138

Contents V

Vi

CONFIG NOMAP_SPOOL 139

CONFIG NOMAP_TCP e 140
CONFIG NOMAP_UDP e 141
CONFIG RSCS_USERID 142
CONFIG SGP_FILE 143
CONFIG SPL_CATCHER 144
CONFIG SPL_INPUT_FT e 145
CONFIG SPL_OUTPUT_FT 146
CONFIG SRV_THREADS 147
CONFIG UMAP_FILE 148
CONFIG VM_CONSOLE 149
CONFIG VM_MSG 150
CONFIG VM_SPOOL 151
CONFIG VM_SUBCOM 152
CONSOLE LIST 153
CONSOLE QUERY 154
CONSOLE START . . . e 155
CONSOLE STOP 156
O 157
ENROLL COMMIT 158
ENROLL DROP 159
ENROLL GET 160
ENROLL INSERT 161
ENROLL LIST 162
ENROLL LOAD 163
ENROLL RECLIST 164
ENROLL REMOVE e 165
IUCV LIST . . . 166
IUCV QUERY . . . 167
IUCV REPORT 168
IUCV START 169
IUCV STOP . . . 170
MONITOR DISPLAY 171
MONITOR USER 172
MSG LIST . . . 173
MSG QUERY 174
MSG START . . . 175
MSG STOP . . . 176
SERVER SERVICES 177
SERVER MONITOR 178
SERVER STOP 179
SGP CREATE 180
SGP DELETE 181
SGP LIST . . 182
SGP MDLIST . . . 183
SGP START . . . 184
SGP STOP 185
SPOOL LIST 186
SPOOL QUERY 187
SPOOL START . . . 188
SPOOL STOP 189
SUBCOM LIST . . . 190
SUBCOM QUERY 191
SUBCOM START e 192

z/VM V3R1.0 RSK Programmer's Guide and Reference

SUBCOM STOP 193

TCP LIST . . . 194
TCP QUERY 195
TCP REPORT 196
TCP START . . . 197
TCP STOP . . . 199
TRIE LIST . . . e 200
UDP LIST . . e 201
UDP QUERY e 202
UDP REPORT 203
UDP START e 204
UDP STOP e 206
USERID MAP 207
USERID RELOAD 208
WORKER ADD 209
WORKER CLASSES 210
WORKER DELCLASS 211
WORKER DELETE 212
WORKER DISTRIBUTE e 213
WORKER MACHINES e 214
WORKER RESET 216
WORKER STATUS 217
Chapter 15. Function Descriptions 219
ssAnchorGet — Get Anchor Value 220
ssAnchorSet — Set Anchor Value 222
ssAuthCreateClass — Create an ObjectClass 223
ssAuthCreateObject — Create an Object 225
ssAuthDeleteClass — Delete a Class 227
ssAuthDeleteObject — Delete an Object 229
ssAuthDeleteUser — Delete a User 231
ssAuthListClasses — List Classes 233
ssAuthListObjects — List ObjectsinClass 235
ssAuthModifyClass — Modify an Object Class 238
ssAuthPermitUser — Permita User 240
ssAuthQueryObject — Query an Object 243
ssAuthQueryRule — QueryaRule 246
ssAuthReload — Reload Authorization Data 248
ssAuthTestOperations — Test Operations 250
ssCacheCreate — Create Cache 252
ssCacheDelete — Delete Cache 254
ssCacheFileClose — Close Cached File 255
ssCacheFileOpen — Open Cached File 256
ssCacheFileRead — Read Cached File 261
ssCacheQuery — Query Cache 263
ssCacheXITabSet — Set Translation Table 265
ssClientDataGet — Get Client Data 267
ssClientDatalnit — Initialize Client Data Buffers 269
ssClientDataPut — Put ClientData 271
ssClientDataTerm — Terminate Client Data Buffers 273
ssEnrollCommit — Commit Enrollment Set 274
ssenrollDrop — Drop Enrollment Set 276
ssEnrollList — List Enrollment Sets 278
ssEnrollLoad — Load Enrollment Set 280

Contents Vi

ssEnrollRecordGet — Get Enrollment Record
ssEnrollRecordInsert — Insert Enroliment Record
ssEnrollRecordList — List Records In Enrollment Set
ssEnrollRecordRemove — Remove Enrollment Record
ssMemoryAllocate — Allocate Memory
ssMemoryCreateDS — Create Data Space
ssMemoryDelete — Delete Subpool
ssMemoryRelease — Release Memory
ssServerRun — Run the Server
ssServerStop — Stop the Server
ssServiceBind — Bind A Service
ssServiceFind — Find A Service L
ssSgpCreate — Create a Storage Group L
ssSgpDelete — Delete a Storage Group
ssSgpFind — Find a Storage Group
ssSgplList — List Storage Groups
ssSgpQuery — Query a Storage Groupo
ssSgpRead — Read a Storage Group
ssSgpStart — Start a Storage Group
ssSgpStop — Stop a Storage Group
ssSgpWrite — Write a Storage Group
ssTrieCreate — Create a Trie
ssTrieDelete — Delete a Trie
ssTrieRecordInsert — Insert Record Into Trie
ssTrieRecordList — List Matching Records
ssUseridMap — Produce Mapped UserID
ssWorkerAllocate — Allocate Connection to Worker Machine

Chapter 16. RSK Sockets
Prerequisite Knowledge
Available Functions
Programming with RSK Sockets
Restrictions and Limitations
Data Structures
Notes on PLXSOCK COPY
Return Codes and ERRNO Values
RSK Socket Calls

Appendix A. Sample PROFILERSK
Appendix B. Sample User ID Mapping File
Appendix C. Authorization Data File Formats
OVEIVIEW
The Data File
The Index File
The Log File
Appendix D. Enrollment Data File Format

Appendix E. Storage Group File

Appendix F. Reserved Names,

z/VM V3R1.0 RSK Programmer's Guide and Reference

Appendix G. More Detail On Reason Codes 397

Appendix H. Messages 411
Generally Applicable Messages 411
CONFIG Service Messages o oo v i e e 413
Line Driver Messages 414
SERVER Service Messages 415
USERID Service Messages e 416
TCP and UDP Line Driver Messages 417
SGP Service MeSsages 421
RSK SUBCOM MeSsages it e e 422
AUTH Service Messages 423
CP Service Messages 425
CMS Service Messages 426
MSG Line Driver Messages 427
SPOOL Line Driver MeSSages o v v v 428
Enrollment APl Messages 429
MONITOR Service MeSsages i i ittt 430
CACHE Service MeSSages o v v v 431
IUCV Line Driver Messages 432
APPC Line Driver Messages 434
Worker APl MeSssages 435
Trie Messages 436
Appendix I. Language Bindings 437
Assembler Language Bindings 437
PL/X Language Bindings 472
Appendix J. What's Changed SincetheBeta 501
Notices e 503
Trademarks e 504
Glossary 505
Bibliography 507
z/VM Base Publications 507
Publications for Additional Facilites 508
Publications for Optional Features 508
CD-ROM . . 509
Index 511

Contents iX

X z/VM V3R1.0 RSK Programmer's Guide and Reference

Preface

This book describes how you can use the Reusable Server Kernel to develop and
execute server programs on CMS.

Who This Book is For

This book is for programmers who want to develop server programs and run them
in the Conversational Monitor System (CMS) environment on VM/ESA 2.2.0 or
later.

What You Should Know Before Reading This Book

This book covers advanced material in server construction and is not for beginning
programmers. To use the material in this book, readers should:

Know one of the supported programming languages, and

Understand concurrent programming concepts, including both general
techniques and specific concepts relevant to CMS Application Multitasking, and

Have experience with CMS application development and the tools and facilities
used by CMS application developers (for example, the GENMOD command and
the Callable Services Library), and

Have a working knowledge of CMS and z/VM as they appear to the CMS
application developer, and

Have application development experience with at least one z/VM connectivity
technology, such as TCP/IP.

What This Book Contains

This book contains descriptions and reference information for the reusable server
kernel. Specifically, it includes the following sections:

Chapter 1, “Basic Concepts” on page 1 provides a brief description of basic
server concepts and gives an overview of the reusable server kernel.

Chapter 2, “Connectivity and Line Drivers” on page 13 describes how the
server kernel supports heterogeneous transport technologies and describes the
programming interfaces the server author must use to exchange data with
clients.

Chapter 3, “DASD Management” on page 31 illustrates the reusable server
kernel's support for high-speed, block-oriented DASD 1/O.

Chapter 4, “File Caching” on page 37 describes the reusable server kernel's
support for caching files in VM Data Spaces.

Chapter 5, “Authorization” on page 41 provides information on the server
kernel's authorization engine.

Chapter 6, “Enrollment” on page 49 describes the server kernel's support for
managing enrollment data.

© Copyright IBM Corp. 1999, 2001 Xi

Xii

Chapter 7, “Indexing by Prefixes” on page 53 describes the server kernel's
support for managing record indices based on lookup by key prefix.

Chapter 8, “Anchors” on page 55 illustrates the server kernel's support for
letting the server program set and query the value of a server-wide anchor
word.

Chapter 9, “Memory Management” on page 57 describes the server kernel's
callable storage allocation primitives.

Chapter 10, “Worker Machines” on page 59 shows how the reusable server
kernel makes it easy for the server author to run work in a set of related virtual
machines.

Chapter 11, “Run-Time Environment” on page 65 provides information on the
run-time environment the reusable server kernel supplies.

Chapter 12, “Initialization and Profiles” on page 71 provides information on
initializing and configuring the server.

Chapter 13, “Monitor Data” on page 79 provides information on how the server
kernel uses CP's APPLDATA facility to accrue monitor data.

Chapter 14, “Command Descriptions” on page 85 provides information on how
to enter reusable server kernel commands and explains the format of each
command.

Chapter 15, “Function Descriptions” on page 219 provides information on the
application programming interfaces the reusable server kernel provides.

Chapter 16, “RSK Sockets” on page 337 provides information on the Reusable
Server Kernel socket library.

This book also supplies a set of appendices:

Appendix A, “Sample PROFILE RSK” on page 379 provides information on the
server profile file, PROFILE RSK.

Appendix B, “Sample User ID Mapping File” on page 383 provides information
on the user ID mapping file.

Appendix C, “Authorization Data File Formats” on page 385 provides
information on the internals of the files the server kernel uses to hold
authorization data.

Appendix D, “Enrollment Data File Format” on page 391 describes the format
of the files the server kernel uses to hold enrollment information.

Appendix E, “Storage Group File” on page 393 describes the format of the file
the server kernel uses to hold descriptions of storage groups.

Appendix F, “Reserved Names” on page 395 provides information on the
conventions the server kernel uses to name objects it manipulates and lists the
names and name prefixes the server kernel reserves for its own use.

Appendix G, “More Detail On Reason Codes” on page 397 provides
information on reason codes and associated recovery actions.

Appendix H, “Messages” on page 411 provides information on messages and
associated recovery actions.

Appendix |, “Language Bindings” on page 437 provides information on
language bindings.

z/VM V3R1.0 RSK Programmer's Guide and Reference

e Appendix J, “What's Changed Since the Beta” on page 501 describes how the
GA level of the reusable server kernel differs from the levels made available
during beta testing.

Where to Find More Information

You can find more information about the z/VM library and its components and
features by examining the books listed in the bibliography in the back of this
publication.

How to Send Your Comments to IBM

Your feedback is important in helping us to provide the most accurate and
high-quality information. If you have comments about this book or any other VM
documentation, send your comments to us using one of the following methods. Be
sure to include the name of the book, the form number (including the suffix), and
the page, section title, or topic you are commenting on.

 Visit the z/VM web site at:
http://www.ibm.com/servers/eserver/zseries/zvm

There you will find the feedback page where you can enter and submit your
comments.

e Send your comments by electronic mail to one of the following addresses:
Internet: pubrcf@vnet.ibm.com
IBMLink™; GDLVME(PUBRCF)

¢ Fill out the Readers' Comments form at the back of this book and return it
using one of the following methods:

— Mail it to the address printed on the form (no postage required in the USA).
— Fax it to 1-607-752-2327.

— Give it to an IBM representative.

| First Edition for z/VM® (February 2001)
| This edition contains updates for the General Availability of z/VM V3RL1.0.

| e A new command, CONFIG SPL_CATCHER, lets the server administrator specify a
| user ID to which the reusable server kernel will CP TRANSFER spool files it is

| unable to decode. For more information, see “Spool Considerations” on

[page 22.

| e A PL/X application programming interface allows for socket programming. This
| interface, the RSK socket library, provides many of the basic operations you

| would need to communicate with other socket programs. See Chapter 16,

| “RSK Sockets” on page 337 for the available functions.

| e Application Programming Interfaces are provided to:

create an index

delete an index

insert a record number
list record numbers

Preface Xiil

See Chapter 7, “Indexing by Prefixes” on page 53 for details.

XiV z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 1. Basic Concepts

Motivation

Most operating systems suitable as server platforms offer a variety of technologies
to the server author. For example, such operating systems might offer one or more
sets of communication interfaces, a threading interface, a file system interface, an
enrollment and authorization interface, storage management primitives, and so on.
In some cases, the technologies offered the server author are complex, advanced
technologies for which the deployment strategies, programming interfaces, and
even the problems solved are apparent only after much study.

The problem created by such systems is that they foist the technology assimilation,
assessment, deployment, and integration responsibilities onto the server author. To
use the system's technologies in a smart way, the server developer must learn all
the system's technology elements, understand their APIls, understand the problems
each element is designed to solve, and understand how these apparently-discrete
technology elements relate to one another. This creates a large burden for the
server developer, and it creates a situation in which each server author (at different
companies, for example) must endure the same learning curve in order to construct
a server that exploits the technology of the operating system underneath it.
Alternatively, such systems create the problem that server authors do not exploit
the systems' technologies because they do not understand the technologies or how
to apply them; this creates a problem for the server applications being developed --
they do not use the system optimally.

To overcome these problems on z/VM, IBM studied the problem of z/VM server
construction and identified problems common to many servers. Further, it identified
the technologies relevant to solving those problems in an optimal way and is
delivering server enablers employing these technologies. IBM's first efforts in this
area produced Server Tasking Environment/VM and its follow-on, CMS Application
Multitasking; these very significant CMS enhancements moved CMS from a
single-processor, single-threaded programming environment to a parallel,
multithreaded system. Continued work in this area has produced not more
operating system code but rather has produced an “empty” server program that
server writers can use as a starting point for server construction. This “empty”
server, called the reusable server kernel, consists of a text library of routines and a
macro library of function prototypes and constant definitions. To construct an
actual server program, the server author attaches application-specific code to a set
of interfaces in the reusable server kernel. The result of such attachment is a
server program heavily exploitive of the z/VM system's best technologies.

A specific example of the reusable server kernel's ability to relieve the server
author of technology exploitation will be helpful. It is well known that building a
z/VM server in a multithreaded fashion helps boost the server's performance and
makes the server easier to design and understand. A server author desiring to
write such a program on his own would need to understand how to use CMS
Application Multitasking to construct a multithreaded program, and he would also
need to decide upon a strategy for dividing the server into multiple threads of
execution. The reusable server kernel, though, lets the server author ignore how to
use CMS's tasking primitives to implement such a structure; instead, the reusable

© Copyright IBM Corp. 1999, 2001 1

server kernel itself organizes the server into this form, maintaining its own
structures and strategies for doing so. The only work left for the server author is to
identify (through a server kernel-provided programming interface) one or more “get
request, do request, answer client” loops, or “services.” The server kernel
replicates these services on multiple threads, doing so in response to the workload
moving through the server. In other words, it is the server kernel that makes the
author's code multithreaded, not the author.

The reusable server kernel provides help in more than just multithreading.
Additional help is provided in these areas:

Table 1 (Page 1 of 3). Additional Help Areas

Topic Description Page

Connectivity A big part of server design and 13
development is the selection and
deployment of connectivity strategies for the
server program. The reusable server kernel
includes line drivers for both bulk-data and
operator-oriented protocols and unifies all of
these line drivers under a single interface.
The server writer develops no
communication code when he uses the
reusable server kernel.

DASD I/0 The reusable server kernel organizes the 31
server's DASD volumes into one or more
storage groups. This set of storage groups
can be brought online, brought offline,
changed in size, and so on through a set of
APIs or a set of commands. 1/O to these
storage groups is thread-synchronous,
thread-blocking, and does not serialize on
the base virtual processor.

When the server runs in an XC-mode virtual
machine, the reusable server kernel can be
configured to use CP's MAPMDISK facility
to perform 1/O to its storage groups. Using
MAPMDISK lets the server program feel the
benefits of caching and the 1/O efficiencies
of the paging subsystem. In other virtual
machine types, or if using MAPMDISK is
inappropriate for some other reason, the
reusable server kernel can use DIAGNOSE
X'0250"' or DIAGNOSE X'00A4' for
storage group 1/O.

2 zIVM V3R1.0 RSK Programmer's Guide and Reference

Table 1 (Page 2 of 3). Additional Help Areas

Topic

Description Page

File Caching

Many servers, such as HTTP daemons, are 37
read-intensive with respect to CMS's file
systems (minidisk, Shared File System, and
Byte File System). The reusable server
kernel offers a file caching API that lets the
server cache such files in a VM Data
Space. The caching support offers an
open-read-close model for file reading;
when the server opens a file through this
API, the reusable server kernel loads the
file into a VM Data Space and keeps it
there for reuse until it becomes stale or is
forced out because of storage contention.
The server can instruct the server kernel to
perform code page translation or record
delineation scheme transformations on the
file as part of loading it into the cache. This
lets the cached file be kept in the data
space in the form most useful to clients.

Authorization

The reusable server kernel provides callable 41
entry points for managing the authorization

of users to objects. These entry points

implement a class-oriented paradigm

wherein the objects, classes, and access

types for each class are completely defined

by the server writer. The authorization data

can reside on CMS minidisks or in either
accessed or unaccessed Shared File

System directories.

Enrollment

Most servers maintain some kind of user 49
database. In the abstract, these databases
are usually nothing more than indexed
access methods. The reusable server
kernel offers an API containing insert,
delete, and lookup operations for records
having fixed-length, 64-byte keys and up to
65,450 bytes of data. The reusable server
kernel holds the records in a VM Data
Space, hashing them for quick lookup, and
backs the VM Data Space with a file in the
Shared File System. The hashing scheme
makes it possible to hold many hundreds of
thousands of records with very good
performance.

Indexing by Prefixes

The reusable server kernel provides APIs 53
that allow the server application to build and
interrogate indices by prefix. The reusable

server kernel keeps each index in its own

VM Data Space while allowing multiple
RSK-based service machines concurrent

access.

Anchors

Callable entry points let the server program 55
set and query the value of a server-wide
anchor word.

Chapter 1. Basic Concepts

Table 1 (Page 3 of 3). Additional Help Areas

Topic Description Page

Memory Management The reusable server kernel provides callable 57
storage allocation and release primitives
designed for multithreaded servers and
suitable for most situations. In addition,
these APIs can allocate and release storage
in a VM Data Space.

Run-time Environment The reusable server kernel provides an 65
automatic storage management convention
that improves the performance of the server
by minimizing the number of storage
management calls needed to manage
automatic storage (that is, execution stack
storage). This convention prevents storage
management calls in most cases.

Worker Machines The reusable server kernel provides a 59
facility that lets the server author run server
work in a pool of virtual machines, instead
of all in a single machine. The server
kernel takes care of autologging these
worker machines and moving data between
the central server and the workers. This is
useful for offloading complex functions or
for isolating risky or time-consuming
operations.

Configuration and Operation The reusable server kernel's operation is 71
configurable and controllable through a set
of commands. These commands let the
operator start and stop services, manipulate
storage groups, and perform other tasks
related to server management. This set of
commands can be used by an exec through
ADDRESS RSK as part of an initialization
strategy or can be submitted through
several of the reusable server kernel's line
drivers.

Socket Library The RSK socket library is a PL/X 337
application programming interface for socket
programming. Although the library does not
provide a one-for-one correspondent for
every IUCV socket function, it does provide
many of the basic operations needed to
communicate with other socket programs.

Overall Server Organization

Fundamentally, a server program is a program that accepts requests from clients
and generates responses for those clients. Some servers are very
transaction-oriented; they accept a single, entire request from a client, produce an
entire response for the client, and then wait for another request from the client.
Other servers are much more stream-oriented; in these situations, the server and
client carry on a running dialogue over which they exchange information freely with
one another, perhaps not according to any strict request/response paradigm. The

4 z/VM V3R1.0 RSK Programmer's Guide and Reference

server author's choice of interaction paradigm is based usually on the kind of work
being performed and the kind of communication technology being used. Personal
preference no doubt also plays a role in this choice.

Whether the relationship is transaction-oriented or stream-oriented, the primary job
of the server is to handle requests from clients. Though handling of such system
facilities as communications, virtual storage, disk, and I/O devices is part of the
overall picture in the server, the essential job of the server is to interact with the
client. All of the logic in the server supports this fundamental operation. Even
interaction with the server operator is a form of interacting with a client, though at
first glance it might seem that interacting with the operator is fundamentally different
from interacting with “regular” clients.

The reusable server kernel strongly emphasizes this fundamental property by
organizing the server writer's work precisely along these lines. The server writer's
primary responsibility is to provide one or more routines, called services, whose job
is to interact with a client over an abstract channel. The server writer also provides
a server mainline, the responsibility of which is to bring up the server, wait for it to
finish, and then take it down. Figure 1 illustrates this organization.

Mainline — “cal” “mail” “dir”

2. Bind

1. Initialization

services

3. Call ssServerRun

4. Cleanup
A Typical Service
Initialization Execution Termination
(multiple instances)
specific specific
startup cleanup
functions functions

Interacts with a
single client over
an abstract channel

Exploits callable
services as needed —

Figure 1. Reusable Server Kernel Overview

Chapter 1. Basic Concepts 5

Jobs of the Mainline

The server mainline gets control shortly after the server module is invoked. It has a
few essential responsibilities:

1. It may perform server-wide initialization, such as reading and processing a
configuration file, checking and adjusting the virtual machine configuration, or
starting a console log.

2. It must identify, or bind, one or more services. Binding a service makes it
known to the reusable server kernel and thereby makes it eligible to be
“started” through operator command.

3. It must call entry point ssServerRun to run the server program. Control returns
to the mainline when the server has ended.

4. It may perform server-wide termination processing, such as closing a console
log.

5. It must return to its caller.

More About Services

Service identification takes place during server initialization, in the mainline
provided by the server author. The reusable server kernel provides a callable
interface, ssServiceBind, which lets the server writer identify the set of services
available. The server writer should arrange the mainline so that it calls
ssServiceBind once for each service being offered. Once a service is bound, it is
available for use for the life of the server.

ssServiceBind accepts as parameters a case-insensitive, eight-byte name for the
service and certain descriptive information about the service. In response to the
call, it builds a data structure called the service block or S-block, which is illustrated

in Table 2.
Table 2. Service Block, or S-Block
Offset Length Usage
0 8 Used by IBM
8 8 Service name
16 4 Service name length
20 4 Address of initialization routine
24 4 Address of service routine
28 4 Address of termination routine
32 4 Service type
36 4 Service lockword
40 4 Current start count
44 4 Monitor data row index

Perhaps the most important parameters to ssServiceBind are the addresses of
these key entry points:

6 z/VM V3R1.0 RSK Programmer's Guide and Reference

e Initialization entry point: a reusable server kernel line driver calls a service's
initialization entry point when it starts the service but before it lets the service
do any work for clients, but only if the service is completely idle -- that is, only if
the service is not currently handling clients through any other line driver.

The initialization entry point should be prepared to accept a parameter list
organized according to Table 3. The return code and reason code in this
parameter list are output parameters to be filled in by the initialization entry
point. If the initialization entry point produces a nonzero return code, the start
attempt will fail.

Table 3. Initialization Entry Point Parameter List. R1 points to this data structure

on entry.

Offset Length Usage

0 4 A(return code)
4 4 A(reason code)
8 4 A(S-block)

e Service entry point: a reusable server kernel line driver activates a service's
service entry point in response to work accruing from clients. When a new
client arrives, the line driver dedicates a thread -- an instance of the service --
to the new client and causes that thread to call the service entry point.r A given
client is always served by the same instance, and a given instance serves
exactly one client.

The line drivers provided by the reusable server kernel are parallelizing, that is,
they attempt to run a service's service entry point on more than one thread
concurrently if necessary. Configuration parameter SRV_THREADS controls the
maximum number of threads on which a given line driver will attempt to run a
given service's service entry point. For more information, see Table 31 on
page 75.

The service entry point should be prepared to accept a parameter list organized
according to Table 4. By way of this parameter list, the reusable server kernel
passes the service entry point the address of a crucial data structure called the
client block or C-block. The C-block, which represents the partnership among
the client, the line driver, and the instance, contains information the instance
uses to interact with the reusable server kernel and also contains fields
identifying and characterizing the client. For more information on the C-block,
see “From Line Driver to Instance” on page 17.

Table 4. Service Entry Point Parameter List. R1 points to this data structure on
entry.

Offset Length Usage
0 4 A(S-block)
4 4 A(C-block)

1 Do not confuse starting an instance with a call to CMS's ThreadCreate function. The reusable server kernel keeps a pool of
threads on which it runs service instances. Each such thread resides in its own dispatch class. Depending upon workload, there
may be more than once instance of a given service executing at any given moment. In other words, the reusable server kernel
parallelizes the server according to the workload moving through the server.

Chapter 1. Basic Concepts 7

The relationship between the line driver and the instance is carried out through
the CSL's queuing primitives, using a queue owned by the line driver, called the
line driver queue. Information necessary to use this queue is contained in the
C-block. To send messages to one another, the line driver and the instance
use QueueSend to place messages on the queue. To receive messages from
each other, the line driver and the instance use one of the “receive” primitives,
such as QueueReceiveBlock, once again operating on the line driver queue.

The selective-receipt facility of the CSL's queue routines is used so that the line
driver and the set of instances using the line driver queue can all use the
gueue without interfering with one another.? Specific information about the
exchange of messages between line drivers and services is available in
Chapter 2, “Connectivity and Line Drivers” on page 13.

When handling of the client is complete, the service entry point should return to
its caller.

e Termination entry point: a line driver drives a service's termination entry
point as part of “stop” processing, if the service is not currently started through
any other line drivers.

The parameter list for the termination entry point is described in Table 5.

Table 5. Termination Entry Point Parameter List. R1 points to this data structure
on entry.

Offset Length Usage
0 4 A(S-block)

Note: For information on the rest of the S-block fields, see “Writing Your Own Line
Driver” on page 27.

Anything Else?

Beyond this, the organization of the server program is up to the server author. The
usual approach will be to implement a mainline and one or more services, along
perhaps with some service threads that perform encapsulated operations on shared
data or some other repetitive work. The server author is strongly encouraged to
use CMS Application Multitasking functions for communication among threads,
implementation of critical sections, and performing other server-related operations.

Calling The Entry Points

Calls to the reusable server kernel's entry points are coded as ordinary assembler
or PL/X function calls. Language bindings for each of these languages are
provided in macro libraries — DMSGPI for assembler and DMSRP for PL/X.

2 Each IPC key generated by the reusable server kernel, whether for external or internal use, has BKW (X'C2D2E6') as its first three
characters. This permits author-supplied code to exploit line driver queues for other purposes when it seems helpful.

8 2/VM V3R1.0 RSK Programmer's Guide and Reference

DMSGPI Macros

The names of the macros are:

DMSRP Macros

Macro Description Page
SSASMANC Anchor bindings 437
SSASMAUT Authorization bindings 438
SSASMCAC File cache bindings 445
SSASMCLI Client bindings 449
SSASMENR Enroliment bindings 451
SSASMMEM Memory bindings 455
SSASMSGP Storage group bindings 458
SSASMSRV Service and server bindings 463
SSASMTRI Trie API bindings 467
SSASMUID User ID bindings 469
SSASMWRK Worker machine bindings 471
The names of the macros are:
Macro Description Page
SSPLXANC Anchor bindings 473
SSPLXAUT Authorization bindings 474
SSPLXCAC File cache bindings 479
SSPLXCLI Client bindings 482
SSPLXENR Enrollment bindings 484
SSPLXMEM Memory bindings 487
SSPLXSGP Storage group bindings 488
SSPLXSRV Service and server bindings 492
SSPLXTRI Trie API bindings 495
SSPLXUID User ID bindings 496
SSPLXWRK Worker machine bindings 497

These macros are invoked with the same conventions as the CMS Application
Multitasking macros, namely:

e for Assembler, just invoke the macro through its name.
o for PL/X, use %include syslib(macro);.

Of course, you must make these macro libraries available to your compiler or
assembler by using the GLOBAL MACLIB command.

A single standard for procedure linkage is used throughout the server. This
standard affords each procedure, whether customer-written or IBM-supplied, an
extremely fast method for obtaining and releasing automatic storage (that is,
storage for local variables and save areas). All of the reusable server kernel entry
points expect the server author to use this linkage to call them, and the reusable

Chapter 1. Basic Concepts

9

server kernel drives all customer-written routines (thread entry points, server entry
point, and so on) using this linkage. Macros are provided to implement the
procedure linkage. For more information, see Chapter 11, “Run-Time Environment
on page 65.

Building a Server Module

To create a server using the reusable server kernel, the server author writes a set
of application-specific code, calling the reusable server kernel entry points as
desired. Using an appropriate language processor, the server author prepares one
or more object modules (files of file type TEXT) containing his application. Exactly
one of these object modules defines entry point RSKMAIN, which is the server's entry
point.3

To build his module, the server writer link-edits his object code with the reusable
server kernel object library and any other object libraries needed. The result of the
link-edit is a module containing both the author's application and the appropriate
reusable server kernel code. For example, if the server were implemented in a
single object deck called SAMPLE, this sequence of CMS commands would
accomplish the link-edit:

GLOBAL TXTLIB BKWLIB DMSPSLK DMSAMT VMMTLIB VMLIB CMSSAA

LOAD SAMPLE (CLEAR DUP AUTO LIBE NOINV FULLMAP RLDSAVE

INCLUDE VMSTART (NOCLEAR DUP AUTO LIBE NOINV FULLMAP RLDSAVE RESET VMSTART
GENMOD SAMPLE (MAP STR

The effect of these commands is to produce SAMPLE MODULE, the resultant server,
and SAMPLE LOADMAP, the load map associated with the module.

Notes:

1. If there were multiple customer-supplied object modules, they would be
accounted for in this procedure by inserting the appropriate INCLUDE commands
after the LOAD of the server mainline.

2. It is important to note that BKWLIB appears ahead of DMSAMT in the text library
search order. BKWLIB contains a DMSLESB (language environment selector text
deck) that overrides the one found in DMSAMT.

Setup At A Glance

In addition to the module you build, you will need these additional files to run your
server:

Table 6 (Page 1 of 2). Files Needed to Run Your Server

File Description

BKWRTE MODULE This is the run-time environment manager program for the
server. Place this file somewhere in the server's file mode
search order.

3 This is very much like the APPLMAIN required by a CMS Application Multitasking program. In fact, the reusable server kernel is a
CMS Application Multitasking program and provides its own APPLMAIN. RSKMAIN is the label of the first instruction of the actual
server code written by the server author.

10 z/vM V3R1.0 RSK Programmer's Guide and Reference

Table 6 (Page 2 of 2). Files Needed to Run Your Server

File Description

BKWUME TEXT This is the reusable server kernel's message repository.
Make sure your server's virtual machine issues SET
LANGUAGE (ADD BKW USER as part of its PROFILE EXEC.

PROFILE RSK The reusable server kernel runs this exec just after your
server module begins execution; the PROFILE RSK you write
contains the configuration and startup commands you need
for your specific environment.

User ID Mapping File Controls the reusable server kernel's translation from
connectivity-specific client identifiers to a normalized, flat
client name space.

If you plan to use certain other features of the reusable server kernel, you will need
to perform additional setup operations, according to:

Table 7. Additional Setup Tasks

Feature Task Page
Storage groups You will need to provide a storage group 31
configuration file.
Authorization API You will need to set up authorization data. 41
Enrollment API You will need to set up enroliment files. 49
Worker API You will need to set up worker machines. 59

Other Considerations

The reusable server kernel manages the server as a CMS Application Multitasking
program. All the information contained in the publication z/VM: CMS Application
Multitasking applies to programs written using the reusable server kernel. For more
information, see z/VM: CMS Application Multitasking.

Chapter 1. Basic Concepts 11

12 z/vM V3R1.0 RSK Programmer's Guide and Reference

Chapter 2. Connectivity and Line Drivers

Server authors usually desire that their servers support many connectivity methods,
for this increases the variety and number of clients that can be served. For
example, a database server might desire to use TCP/IP and spool files as
connectivity methods for clients; this would let clients reside on a variety of
networks and platforms. Similarly, a server author might desire that the server
program accept operator commands and deliver operator responses over a humber
of channels (CP MSG, CP SMSG, virtual console 1/0); this would let the server
program be operable remotely or locally, with no extra work being done by the
server author.

A major problem in supporting heterogeneous connectivity is that the server author
must learn a set of communication interfaces for each connectivity technology to be
supported, and he must write exploiting code for each connectivity API. Further,
the higher levels of such exploiting code are usually similar, regardless of the
transport technology being exploited; for example, most connection-oriented
transports support initialize, send, receive, and terminate primitives, and the
server's treatment of those primitives is remarkably similar from one transport to the
next. Thus an additional problem, duplication of effort, is also apparent.

The reusable server kernel relieves the server author of the burden of supporting
multiple connectivity technologies. It furnishes the server writer with a set of line
drivers and does so in a way that hides most communication differences from the
server writer. Each line driver performs these basic functions for the server core:

It creates and deletes service instances in response to the arrival and
departure of clients.

* It collects bytes from clients and delivers them to service instances according to
the mapping between service instances and clients and in the order in which
said bytes arrive.

e |t acts as the transmission agent for the set of service instances, sending bytes
to clients in the order in which the respective clients' service instances emit
them.

e |t ascertains the identities of clients, mapping them into a single user identity
space, and informs service instances of said identities.

Each of these functions is performed in a way consistent with the APIs and
capabilities of the respective connectivity technologies.

The reusable server kernel provides a set of line drivers, one driver for each
transport protocol it supports:

* APPC/VM (global, local, and private resource managers)
e |UCV

e TCP/IP

e UDP/IP

e Spool files

e MSG/SMSG

e Virtual console

e Subcom

Each driver is organized according to Figure 2 on page 14.

© Copyright IBM Corp. 1999, 2001 13

Tine driver

line driver queue instance
messages for
from — data are instances
client A received Notes:
QRB
QueueSend ———|IKa| bits |———» — QRB =
get QueueReceiveBlock
data
IKb| bits - IKa = instance
key for client
put A's instance
messages for data
line driver then — IKb = instance
QSend key for client
QRB B's instance
<«——|LDK|IKa|b |+—
data are — LDK = Tine driver
to <+«—— sent key
client A LDK| IKb|b
— b or bits =
status bits
exchanged

Figure 2. Line Driver Organization

The Service Instance's View

As introduced earlier, a service instance interacts with a line driver through two
mechanisms:

¢ When a line driver starts an instance, it passes the instance a control block that
describes the partnership among the client, the line driver, and the instance.
This control block is called the client block or C-block.

* To interact with one another, the line driver and the instance exchange
messages using a CMS queue maintained by the line driver. This queue is
called the line driver queue. They also enqueue and dequeue data on a set of
reusable server kernel-maintained client buffers. These buffers are accessed
with the ssClientDataGet and ssClientDataPut primitives.

This section describes the C-block and the messages exchanged through the line
driver queue.*

4 For the server writer's convenience, macros SSPLXSRV COPY and SSASMSRV MACRO contain mappings of the C-block and the
messages exchanged by way of the line driver queue.

14 z/vM V3R1.0 RSK Programmer's Guide and Reference

The Client Block, or C-Block

As mentioned in “More About Services” on page 6, the relationship between a line
driver and an instance of a service is carried out through a control block -- the
C-block -- and a CMS queue. Some of the most important information in the
C-block, then, is information describing the queue to be used and how it is to be
used. This information appears in the C-block in the form of queue handles and
message keys. Table 8 summarizes the fields of the C-block.

Table 8 (Page 1 of 2). Client Block, or C-Block

Offset

Length

Usage

Description

0

4

S-block pointer

The address of the S-block for the service with which this instance is
affiliated.

Line driver name

The name of the line driver with which the service is interacting. The
names are given in Table 9 on page 16.

12

Line driver status word

Specific information about the line driver. The bits of the status word
have these meanings:

Bit Meaning
X'80000000' The line driver is record-oriented:

e When supplying the instance with client
input, the line driver organizes the client's
input as a sequence of records. Each
record is prefixed with a four-byte length
field. The value stored in the four-byte
length field does not include the length of
the length field itself.

¢ When producing output for the client, the
instance must organize the output as a
sequence of records, as described
previously.

The MSG/SMSG, CONSOLE, SUBCOM, and
SPOOL drivers are record-oriented.

16

Line driver queue handle

The queue handle the instance should use to receive messages from
and send messages to its associated line driver.

20

Line driver service ID

The service ID of the line driver queue. This might be useful to the
instance in some situations.

24

Instance identifier

An integer identifier assigned to this instance by the line driver. This
numeric identifier will never be reused by this line driver.

28

Instance thread ID

The CMS thread ID of the thread on which the instance is running.

32

32

Instance key

The key the line driver will use when it transmits messages needing
the instance's attention. Such messages will be placed on the line
driver queue, are indicative of client activity, and are organized
according to Table 12 on page 18. The instance key is the key the
instance should use in its receive (for example, QueueReceiveBlock)
call.

64

32

Line driver key

The key the instance should use when it transmits messages needing
the line driver's attention. Such messages should be placed on the
line driver queue, are usually indicative of the instance's having
queued data for transmission to the client, and are organized
according to Table 13 on page 18.

96

64

Mapped user ID of client

The reusable server kernel's best attempt at assessing the user ID of
the client. Depending on the communication transport being used,
this assessment is made in several different ways, as shown in
Table 10 on page 16.

160

Total bytes into instance

The total number of bytes the instance's client has sent the instance
so far.

Chapter 2. Connectivity and Line Drivers 15

Table 8 (Page 2 of 2). Client Block, or C-Block

Offset Length Usage Description

164 4 Total bytes from instance The total number of bytes the instance has sent to the client so far.

168 4 Bytes waiting for instance The number of bytes waiting to be consumed by the instance.

172 4 Bytes waiting for line driver The number of bytes waiting to be consumed by the line driver.

176 8 Start STCK The time at which the client began communicating with the server,
stored according to the format of the Store Clock (STCK) instruction.

184 8 Reserved for IBM

192 128 Reserved for IBM

320 Varies Line-driver-specific data The data is organized differently for each line driver, as shown in

Table 11 on page 17.

Table 9. Line Driver Names. All names are padded on the right with spaces (X'40").

Line Driver Name in C-Block
APPC/VM APPC

IlUCcv IUCv

TCP/IP TCP

UDP/IP UbpP

SPOOL SPOOL
MSG/SMSG MSG

Console CONSOLE

Subcom SUBCOM

Table 10. User ID Mapping Schemes

Transport Method

APPC/VM Security user ID of conversation, mapped through user ID mapping
file

IlUcv Field IPVMID of connection pending EIB, mapped through user ID
mapping file

MSG User ID and node of origin of message, mapped through user ID
mapping file

TCP/IP IP address of client, mapped through user ID mapping file

UDP/IP IP address of client, mapped through user ID mapping file

Spool User ID and node of origin of spool file, mapped through user ID
mapping file

Console Literal *

Subcom Literal *

16 z/vM V3R1.0 RSK Programmer's Guide and Reference

Table 11. Line-Driver-Specific Portion of C-Block
Line Data
Driver
TCP/IP 0.4 IP address of client
4.4 Port number of client
UDP/IP 0.4 IP address of client
4.4 Port number of client
APPC/VM 0.8 Security user ID of client
8.17 Locally known LU of client
Ilucv 0.8 Field IPVMID from connection pending EIB
Spool 0.8 Reserved for IBM
8.8 User ID of client
16.8 Node of client
24.4 Spool ID of reader file (character form)
MSG/SMSG | 0.4 Reserved for IBM
4.8 User ID of client
12.8 Node of client
Console None present
Subcom None present

From Line Driver to Instance

A reusable server kernel line driver transmits a message to the instance each time
something “interesting” happens with respect to the client. This message serves to
notify the instance that something has happened and to advise the instance that it
might wish to take a corresponding action. The message contains status bits that
indicate exactly how the relationship with the client has changed. This message is
organized according to Table 12 on page 18. The instance can pick up these
notifications using QueueReceiveBlock,® using the line driver queue handle and
instance key from the C-block.

Each message to an instance will have its message type field set to
ss_srv_msgtype_instance.® Usually the instance's reaction to such a notification will
be to attempt to retrieve data from the client and process it. To do so, the instance
should use ssClientDataGet.

When the instance sees a message in which the line driver STOP bit is set, it
should:

e Emit any remaining transmissions intended for its current client
e Transmit a STOP acknowledgement message to the line driver
e Return to its caller.

For more information, see “From Instance to Line Driver” on page 18.

5 QueueReceivelImmed is also acceptable.
6 Defined in SSPLXSRV COPY and SSASMSRV MACRO.

Chapter 2. Connectivity and Line Drivers

17

Table 12. Message from Line Driver to Instance. The reusable server kernel always
transmits this message using key offset 0 and key length 32.

Offset Length Usage

0 32 Instance's key
32 4 Message type
36 2 Client status bits

X'8000' Client has closed connection
X'4000' Connection closed abnormally
X'2000" Client has finished sending
X'1000' Line driver requests STOP
X'0800' New data from client

From Instance to Line Driver

To send data to the client, the instance should use routine ssClientDataPut and
then notify its line driver of the new data by using QueueSend. The precise form of
the message the instance should transmit is given in Table 13.

The instance should set the message type field to ss_srv_msgtype_linedriver in
each message it transmits to the line driver.

To inform the line driver that it has queued additional information for the client, the
instance should set the instance has queued output bit in the message it transmits
to the line driver.

To acknowledge a stop request from the line driver, or to indicate that it is
spontaneously stopping for its own reasons, the instance should set the stop
acknowledgement bit in the message it transmits to the line driver.

Table 13. Message from Instance to Line Driver. The instance always transmits this
message using key offset 0 and key length 32.

Offset Length Usage

0 32 Line driver's key
32 4 Message type

36 32 Instance's key

68 2 Instance status bits

X'8000' Stop acknowledgement
X'4000' Instance has queued output

TCPI/IP Considerations

18

To use TCP/IP, the server machine must be configured for TCP/IP operation.
Typically this means that the server must be enabled to use IUCV to communicate
with the TCP/IP service machine. These CP directory considerations apply:

e The server machine must be permitted to connect to the TCP/IP service
machine. Typically the TCP/IP service machine has IUCV ALLOW in its own CP
directory entry; when this is the case, no special work is required in the server
machine's directory entry.

z/VM V3R1.0 RSK Programmer's Guide and Reference

e The server machine's MAXCONN must be set high enough to let TCP/IP activity
proceed. The reusable server kernel's TCP/IP line driver consumes one IUCV
path ID per started service.

These other considerations apply:

¢ When the TCP/IP line driver starts a service, it binds the service's port number
onto the adapter address specified in the START command and issues listen()
with a backlog queue size of 10.

¢ Clients should connect to the reusable server kernel using stream sockets.
e The reusable server kernel creates all its sockets in addressing family AF_INET.

e The TCP/IP line driver uses the reusable server kernel's user ID mapping
facility with connectivity identifier TCP to map the client's IP address into a
single-token user ID.” Because IP addresses can be spoofed, this feature
should be exploited only if the IP network is trusted.

» [f the reusable server kernel is not able to map the user ID, then it behaves
according to the setting of configuration parameter NOMAP_TCP:

OFF Connection is closed
ON User ID $UNKNOWN is passed to instance

UDP/IP Considerations

Like using TCP/IP, using UDP/IP requires that the server machine be configured for
TCP/IP operation. Again, this means that the server must be enabled to use IUCV
to communicate with the TCP/IP service machine. To achieve this, follow the same
procedures as you would use to set up for TCP/IP operation. Be aware that the
UDP/IP line driver consumes one IUCV path per started service, just as the TCP/IP
line driver does; plan your MAXCONN accordingly.

The following other considerations apply:

* When the UDP/IP line driver starts a service, it binds the service's port number
onto the adapter address specified in the START command.

e Clients should send to the server using datagram sockets and should expect
the server's response to come as one or more datagrams.

e The reusable server kernel considers each received datagram to be
representative of a distinct transaction. When a datagram arrives, the reusable
server kernel creates a service instance and passes the datagram's contents to
the service instance through ssClientDataPut. In other words, a service
instance will only ever “see” one inbound datagram from a client. Each
inbound datagram is considered to be its own transaction and accordingly is
delivered to a separate instance.

e For a given service instance, the reusable server kernel will emit as many
response datagrams to the client as are necessary, until the service indicates
completion of the transaction through usual means (stop acknowledgement bit
set in IPC message to line driver).

7 In the call to ssUseridMap, parameter nodename is filled with the IP address and parameter userid is filled with *.

Chapter 2. Connectivity and Line Drivers 19

e The UDP/IP line driver uses the reusable server kernel's user ID mapping
facility with connectivity identifier UDP to map the client's IP address into a
single-token user ID.8 Because IP addresses can be spoofed, this feature
should be exploited only if the IP network is trusted.

¢ |f the reusable server kernel is not able to map the user ID, then it behaves
according to the setting of configuration parameter NOMAP_UDP:

OFF Datagram is ignored
ON User ID $UNKNOWN is passed to instance

IUCV Considerations

To use IUCV, the server virtual machine must be configured for [IUCV operation.
Typically this means the following for the server's CP directory entry:

e IUCV ALLOW should be specified so that clients can connect to the server virtual
machine.

e OPTION MAXCONN must be set large enough to handle the number of clients you
anticipate will be connected to the server concurrently. Allow one connection
for each client.

For more information, see VM/ESA: Connectivity Planning, Administration, and
Operation.

The following specific considerations apply to the use of IUCV. These
considerations will be particularly helpful in writing clients.

e The server kernel uses CMS's CMSIUCV and HNDIUCV macros for IUCV path
management, so as not to interfere with other IUCV or APPC/VM usage in the
server virtual machine.

¢ The reusable server kernel opens an HNDIUCV exit for each service it starts.
Usually, the name of the exit matches the name of the service. The server
operator can override this with the TUCV START command if some other exit
name must be used.

* A client wishing to connect to an reusable server kernel-managed service must
specify the name of the service's exit routine in the IPUSER field of its IUCV
CONNECT parameter list.

e The server kernel issues IUCV ACCEPT with MSGLIM set to 65535. The server
administrator can force a lower value by installing an appropriate IUCV control
statement in the server's CP directory entry.

¢ The reusable server kernel produces the client's mapped user ID by calling
ssUseridMap with connectivity identifier IUCV, specifying the local nodename
and the VM user ID of the client (field IPVMID of the connection pending EIB) as
the remaining inputs.

 |If the reusable server kernel is not able to map the user ID, then it behaves
according to the setting of configuration parameter NOMAP_IUCV:

OFF Path is severed
ON The IPVMID field of the connection pending EIB is passed to the
instance

8 In the call to ssUseridMap, parameter nodename is filled with the IP address and parameter userid is filled with *.

20

z/VM V3R1.0 RSK Programmer's Guide and Reference

e The reusable server kernel lets the client use IUCV SEND with either
DATA=PRMMSG or DATA=BUFFER. However, the reusable server kernel always
transmits using DATA=BUFFER.

e The reusable server kernel does not permit the client to use IUCV
SEND,TYPE=2WAY. All sends to the server must be one-way sends. If the client
attempts a two-way send, the reusable server kernel will sever the path.

e The server kernel will tolerate IUCV priority messages but never sends them.

e Data arriving from the client is queued to the affiliated service instance in the
order that the message pending interrupts arrive, without regard to any other
factors.

e The server kernel is optimized for 64 KB transfers between the client and the
server. In fact, the reusable server kernel never transmits more than 64 KB in
a single IUCV message. Best results will be achieved when the client takes
this optimization into account.

e The reusable server kernel does not permit the client to use IUCV QUIESCE or
IUCV RESUME. It will sever the path if the client tries these. Similarly, the
reusable server kernel never uses these macros itself.

APPC/VM Considerations

To use APPC/VM, the server virtual machine must be configured for APPC/VM
operation. Typically this involves one or more of these:

e Adding proper IUCV-related statements to the virtual machine's directory entry.
These statements control the names of the resources the machine is allowed to
identify and the number of concurrent conversations the machine is allowed to
use. Sometimes permitting clients to connect is also accomplished here.

 |If the virtual machine is managing an APPC/VM private resource,

— The virtual machine must IPL CMS with parameter AUTOCR.

— The virtual machine should run with Fullscreen CMS off.

— File PROFILE EXEC should contain SET SERVER ON.

— File $SERVER$ NAMES must be set up to map the resource name to the
name of the server program and to identify the clients permitted to connect.

For more information, see VM/ESA: Connectivity Planning, Administration, and
Operation.

The following specific considerations apply to the use of APPC/VM. These
considerations will be particularly helpful in writing clients.

e To allocate a conversation to the server, the client should use the LU name
appropriate for the server virtual machine's location and resource type and a
TPN equal to the one used in the server's APPC START command. For more
information, see Chapter 14, “Command Descriptions” on page 85.

e The APPC/VM line driver accepts either mapped or basic conversations. Be
aware, though, that inbound APPC record boundaries are not visible to the
instance and that the instance has no control over record boundaries in
outbound APPC records.

e The APPC/VM line driver uses the connectivity identifier APPC, the LU of the
client, and the user ID of the client as input to its user ID mapping function.
For more information on user ID mapping, see Chapter 12, “Initialization and

Chapter 2. Connectivity and Line Drivers 21

Profiles” on page 71. The client's node is taken to be his LU (field CPEVPLKL of
the connection pending extended data) and his user ID is taken to be field
IPVMID of the connection pending EIB. If the conversation was allocated with
SECURITY(NONE), the server kernel substitutes $UNKNOWN for the
X'0000000000000000" user ID CP supplies in the EIB.

If the reusable server kernel is not able to map the user ID, then it behaves
according to the setting of configuration parameter NOMAP_APPC, as follows:

OFF Conversation is severed
ON The IPYMID field of the connection pending EIB (or $UNKNOWN, if
SECURITY(NONE)) is passed to the instance.

The reusable server kernel does not support SYNCLVL(CONFIRM) or
SYNCLVL(SYNCPT) conversations. Attempts to use these will result in a
sever.

Spool Considerations

These considerations apply when using spool files as a connectivity mechanism:

22

Requests from clients arrive at the server virtual machine's reader from either
the same node as the server or from remote nodes through RSCS or functional
equivalent.

Spool files containing requests must be encoded using one of the following
techniques:

— NETDATA encoding (NEW option of SENDFILE)
— DISK DUMP encoding (0LD option of SENDFILE)

If a file encoded with some other technique arrives, the reusable server kernel
will CP TRANSFER it to the user ID specified by the SPL_CATCHER configuration
parameter, or if no such user ID is specified, the file will remain in the server's
reader in USER HOLD status.

No matter which encoding is used, each data record of the sent file is extracted
and given to the service as a record of input. (The spool driver is
record-oriented.)

The reusable server kernel considers only those reader files having filetype
matching the value of configuration parameter SPL_INPUT _FT. All other reader
files are ignored.

When a spool file arrives, the reusable server kernel scans the reader for new
work. When it finds a file whose filetype matches configuration parameter
SPL_INPUT_FT, and whose filename matches a started service, and which is not
in a hold of some kind, the driver reads the file's data from the spool and
attempts to deliver the data to the started service.

When SPOOL START is issued, the reusable server kernel scans the reader for
new work, just as it would scan as a result of spool file arrival, but with the
following addition: if a file would have been delivered to the newly-started
service except for the fact that the file has been found to be in USER HOLD
state, the file is changed to NOHOLD and its data is delivered to the
newly-started service.

If the file name of the spool file does not match the name of any started
service, and if implicit VM routing is enabled for the spool driver, then the

z/VM V3R1.0 RSK Programmer's Guide and Reference

reusable server kernel delivers the file's data records to the CMS service,
provided the CMS service has been started. For more information about
implicit routing, see Chapter 12, “Initialization and Profiles” on page 71.

* While processing of a file is underway, the file remains in the reader in USER
HOLD state.

* If delivery of the file's data to its service fails, or if the service fails to consume
all of the data of the spool file, the file is left in the reader in USER HOLD
state. Otherwise the file is purged.

e The spool driver uses the reusable server kernel's user ID mapping facility with
connectivity identifier SPOOL to map the origin user ID and origin node of the
spool file into a single-token user ID. For more information on the user ID
mapping facility, see Chapter 12, “Initialization and Profiles” on page 71. This
user ID is passed to the service instance as the client's user ID. However, if
the spool driver's call to the user ID mapping facility reveals that no mapping
exists, action is taken, if NOMAP_SPOOL is:

— OFF, the file is placed in USER HOLD status and a message is issued to
the server console.

— ON, the file is passed to the service instance, with the origin user ID
passed directly as the “mapped” user ID.

e The SPOOL line driver parallelizes requests. If a client sends multiple requests
to the same service, the two requests might finish in an order other than the
one in which they were sent. This applies also to the situation where the
multiple requests are sent to different services.

MSG/SMSG Considerations

The CP MSG and CP SMSG commands can be used to send work to service instances
being managed by the reusable server kernel. The following considerations apply:

e Each MSG or SMSG should bear as its first token the prefix supplied on the
MSG START command that started the service. For example, to send a request
called SHUTDOWN to the service started with prefix CAL_OPER running in
virtual machine SERVER, an operator might issue this command:

TELL SERVER CAL_OPER SHUTDOWN

 |If the first token of the message (in the above example, CAL_OPER) does not
match the name of any request processor registered in the server, and if
implicit VM routing is enabled for the MSG/SMSG line driver, then the reusable
server kernel delivers the command to the CMS service, provided the CMS
service has been started.

For more information about implicit routing, see Chapter 12, “Initialization and
Profiles” on page 71.

* Each message the MSG/SMSG line driver places in a line driver queue
contains a single MSG or SMSG sent to the server virtual machine.

e The MSG/SMSG line driver uses the user ID mapping facility with connectivity
identifiers MSG and SMSG to map the user ID and node of the message sender to
a single-token user ID. This user ID is the one passed to the request
processor in the C-block header. However, if the driver's call to the user ID
mapping facility reveals that no mapping exists, action is taken as follows:

Chapter 2. Connectivity and Line Drivers 23

— If NOMAP_MSG is OFF, the message is ignored and an error message is
written to the server console.

— If NOMAP_MSG is ON, the message is sent to the service instance, with the
origin user ID passed directly as the “mapped” user ID.

e The MSG/SMSG line driver is record-oriented.

¢ The MSG/SMSG line driver parallelizes requests. If a client sends multiple

requests to the same service, the two requests might finish in an order other
than the one in which they were sent. This applies also to the situation where
the multiple requests are sent to different services.

When the MSG/SMSG driver builds output, it prefixes each line of service
output with the prefix assigned to the service, padded to 8 characters. For
example, for service CAL_OPER above, each line of output produced by the
CAL_OPER service would be prefixed with CAL_OPER.

Virtual Console Considerations

24

The reusable server kernel runs the server virtual machine's console in line mode.
These considerations apply:

e When entering a command for a service, the operator should use the prefix

supplied on the CONSOLE START command as the first token of the command
line. For example, to send a request called SHUTDOWN to the service called
CAL_OPER, the operator should enter the following on the virtual machine's
console:

CAL_OPER SHUTDOWN

If the first token of the command (in the above example, CAL_OPER) does not
match the name of any request processor registered in the server, and if
implicit VM routing is enabled for the console line driver, then the reusable
server kernel delivers the command to the CMS service, provided the CMS
service has been started. For more information about implicit routing, see
Chapter 12, “Initialization and Profiles” on page 71. The console driver:

— Always supplies * as the mapped client user ID.
— Is record-oriented.

— Parallelizes the services it starts. Requests sent to a given service are
begun in the order in which they are typed, but they might complete in a
different order.

When the console driver routes output to the console, it prefixes each line of
service output with the prefix assigned to the service, padded to 8 characters.
For example, for service CAL_OPER above, each line of output produced by
the CAL_OPER service would be prefixed with CAL_OPER. For this reason, if it
is possible in your environment, the server virtual machine's console should be
wider than 80 columns. IBM recommends that you use at least 90 columns for
the console.

z/VM V3R1.0 RSK Programmer's Guide and Reference

Subcom Considerations

The reusable server kernel supplies a subcom, RSK, to which execs may direct
commands; the output of such commands is written to the virtual console. These
considerations apply:

When issuing a command to a service, the exec writer should use the prefix
supplied on the SUBCOM START command as the first token of the command. For
example, to issue a command called SHUTDOWN to the service called
CAL_OPER, the exec writer might code:

address 'RSK' 'CAL_OPER SHUTDOWN'

If the first token of the command (in the above example, CAL_OPER) does not
match the name of any request processor registered in the server, and if
implicit VM routing is enabled for the SUBCOM line driver, then the reusable
server kernel delivers the command to the CMS service, provided the CMS
service has been started. For more information about implicit routing, see
Chapter 12, “Initialization and Profiles” on page 71.

The SUBCOM driver always supplies * as the mapped client user ID.
The SUBCOM line driver is record-oriented.

The SUBCOM driver does not return to the calling EXEC until the command is
complete.

The SUBCOM driver routes service output to the virtual console, in the manner
of the console line driver.

Because services do not generate return codes, the server author should not
use Rexx variable rc as an indication of the completion status of commands
issued through the SUBCOM driver.

Line Driver Commands

As mentioned earlier, services are started and stopped by line drivers. This is done
through line driver commands. Largely speaking, line driver commands are present
to perform these important functions:

Starting a service is nothing more than connecting it to a reusable server kernel
line driver -- the start operation is an instruction to a line driver to prepare for
communication and connect its communication device or channel to a named
service. In other words, an operator starts a service by issuing a command
that's interpreted by a specific line driver; in response to the command, the line
driver begins driving work through the service.

Stopping a service is nothing more than informing a line driver that its
communication method should be shut down; as a consequence of this, no
more client activity will be reflected to the corresponding service through that
line driver. The stop can be graceful or immediate.

Though the reusable server kernel contains a number of line drivers, the command
sets understood by all of the line drivers are roughly the same. Each line driver
supports START and STOP commands and a few queries. The syntax of these
commands differs slightly from line driver to line driver to accommodate differences
in transport attributes; for example, the TCP/IP line driver expects a port number to
appear in its START command, while the spool line driver expects a file name.

Chapter 2. Connectivity and Line Drivers 25

For more information on the line driver commands, see Chapter 14, “Command
Descriptions” on page 85.

More Detail on Line Drivers

A line driver is nothing more than a service that supplies other services with a
method to interact with clients. Here is an overview and some information about
how you can write your own line drivers.

Line Drivers as Services

Recall that in the reusable server kernel, a service is just a routine that takes input
from a line driver and which delivers output to a line driver. The line driver takes
care of routing data between the client and the service.

Consider also that a reusable server kernel line driver is itself a program that takes
input from a client; this input is just operator commands (START, for example).
Similarly, a reusable server kernel line driver is itself a program that produces
output for its “client” (the operator). This output is command response text, such as
the result of a LIST command.

Because of this nature of a line driver, we can see that a line driver can be
implemented as a reusable server kernel service. To send commands to and
receive responses from this service, we just have to START it through some other
line driver; we would then have a means to send it commands and gather its
responses.

For example, consider the TCP/IP line driver. It accepts commands -- such as
START -- from its operator and produces command responses for its operator. How
does it do this? Well, it does so by way of the line driver over which it is interacting
with the operator. In other words, the TCP/IP line driver is a service sourced by
some other line driver, such as the console line driver.

Continuing this, we see that if we want to issue commands to the TCP/IP line driver
by using the virtual console, we must start the TCP/IP line driver by using the
command CONSOLE START TCP.? If we also wanted to control the TCP/IP line driver
by way of MSG and SMSG, we could issue MSG START TCP. After having done both
of these commands, we could control the TCP/IP line driver by all of these
methods:

e Typing a command on the virtual console, the first token of said command
being TCP.

e Sending a CP MSG to the server virtual machine, the first token of said message
being TCP.

e Sending a CP SMSG to the server virtual machine, the first token of said
message being TCP.

9 Note that TCP is the service name of the TCP/IP line driver.

26

z/VM V3R1.0 RSK Programmer's Guide and Reference

Self-Sourced Line Drivers
Now, consider the console line driver. Like the TCP/IP line driver, the console line
driver is implemented as a service. This means that the commands supported by
the console line driver, such as CONSOLE START, are issued to the console line driver
by way of some other line driver, and the responses to said commands are
delivered to the operator through said other line driver.

For example, if we were to issue MSG START CONSOLE, we would be able to use the
CP MSG command to issue commands like CONSOLE START. When we did so, the
response from the console line driver would appear at the virtual machine from
which we issued CP MSG, because that's how the MSG/SMSG line driver disposes
of responses from the services it controls.

But look again at that console line driver. When the reusable server kernel starts,
the console line driver's command set (CONSOLE START and so on) is already usable
by typing those commands on the virtual console. This is possible because the
console line driver is built to be self-sourcing. In other words, it is capable of
starting itself, and it does so when the reusable server kernel initializes.

The CONSOLE, SUBCOM, MSG/SMSG, and SPOOL line drivers are all
self-sourcing. This means that when the reusable server kernel initializes, all of the
following methods are available for issuing commands to these drivers:

* You can type CONSOLE START (for example) on the virtual console and the
console line driver will handle the command and write the response to the
virtual console.

e You can issue a CP MSG or CP SMSG command to send a command to the
MSG/SMSG line driver from elsewhere (making sure the first token of that
message or special message is MSG), and the MSG/SMSG line driver will
handle the command and respond to you through CP's MSG command.

e From a REXX EXEC, you can use ADDRESS RSK to issue a command to the
SUBCOM line driver (making sure the first token of that command is SUBCOM),
and the SUBCOM line driver will handle the command and respond by writing
its output to the virtual console.

* You can send a file to the SPOOL driver; it will process the lines therein as
commands and return a file to you containing the results.

Writing Your Own Line Driver
The notion that the reusable server kernel implements line drivers as services
permits the server author to add his own line drivers. To add a line driver, the
server author just uses ssServiceBind in his RSKMAIN to bind the service, just as he
would do for any other service he writes, except:

* He must at least specify service type ss_srv_srvtype_1d in his call to
ssServiceBind. This informs the reusable server kernel that the service being
bound is in fact a line driver.

 If he is writing a self-sourced line driver, he must specify ss_srv_srvtype Tdss
in his call to ssServiceBind. This informs the reusable server kernel that the
service being bound is a self-sourced line driver.

After calling ssServiceBind, RSKMAIN should proceed as usual, eventually calling
ssServerRun. These considerations apply:

Chapter 2. Connectivity and Line Drivers 27

28

e The reusable server kernel does not take any special action for regular line
drivers; the server author must use PROFILE RSK to start his line driver (for
example, CONSOLE START MYDRIVER to enable his line driver to interact with the
server operator through the virtual console).

e For a self-sourced line driver, the reusable server kernel does the following
shortly after ssServerRun begins:

— It drives the line driver's initialization entry point (known because of the
ssServiceBind call the author placed in RSKMAIN).

— If initialization worked, the reusable server kernel creates a thread and runs
the line driver's service routine (again, known because of the
recently-performed ssServiceBind) on that thread, passing the service
routine a C-block address of X'00000000".

The C-block address being zero is the self-sourced line driver's cue that it
should initialize its device and prepare to accept its command set over its
device.

Finally, the reusable server kernel provides entry point ssServiceFind so that an
author-supplied line driver can retrieve descriptive information saved by
ssServiceBind. This permits author-supplied line drivers to respond to their
equivalent of the IBM-supplied drivers' START command. ssServiceFind takes a
service name as input and returns the address of the service's S-block. For more
information, see Table 2 on page 6.

Some of the fields of the S-block are relevant to the server author only in the
context of author-supplied line drivers. These are:

e The current start count is a counter used to indicate the number of START
commands that are current against the service. The counter is used in this
manner:

— If the counter is zero when a line driver performs a START of this service,
the line driver should drive the service's initialization routine prior to letting
the service's service routine get control.

In any case, the line driver should increment the counter just prior to driving
the service's service routine.

— When the line driver performs a STOP operation, it should first stop all its
instances of the service's service routine and then decrement the counter.
If the counter becomes zero as a result of this decrement, the line driver
should drive the service's termination routine.

e The lockword is intended for use with the Compare and Swap instruction (CS).
It is a line driver's means for ensuring mutual exclusion in examination and
setting of the start count and in the driving of a service's initialization and
termination routines. If the lock word is zero then it is considered not to be
held. Any nonzero value marks the lock as held. If an attempt to get the lock
through CS fails, call ThreadYield before trying again.

z/VM V3R1.0 RSK Programmer's Guide and Reference

Authorization

Permission to start and stop services can be controlled through configuration
parameter AUTHCHECK_ LD and the AUTH command set. This capability lets the server
administrator set up subordinate operators who can control some services but not
others. For more information, see “Other Services' Use of Authorization” on

page 46.

Chapter 2. Connectivity and Line Drivers 29

30 z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 3. DASD Management

Authors of certain kinds of servers will require a DASD subsystem capable of high
volume, high speed, parallelized I/O with a block-oriented model. The reusable
server kernel DASD subsystem meets these requirements, is integrated with CMS
Application Multitasking, and recognizes the CMS thread, not the VCPU or the
virtual machine, as the entity that performs DASD 1/O. Specific programming
information is found in the ssSgp API descriptions, and operator-oriented information
is found in the descriptions of the SGP command set.

DASD Subsystem Overview

The reusable server kernel accomplishes its DASD objectives through the following
scheme:

Defined to the reusable server kernel are one or more sets of CMS minidisks,
each such minidisk formatted at 4 KB (kilobyte) blocksize and reserved (CMS
FORMAT and RESERVE commands). Such minidisks provide the raw storage for
the DASD model implemented by the server kernel. Each set of such minidisks
is called a storage group.t®

For each storage group, the server kernel creates one or more VM data
spaces. The total number of pages in the data spaces is equal to the total
number of data blocks on the constituent minidisks.

Through MAPMDISK, each storage group's minidisk set is mapped into the
pages of its data space set.!

To read DASD blocks, the reusable server kernel performs MVCL from the
appropriate pages in the appropriate data space. In response to this, CP
pages in the mapped DASD blocks as required. Paging is a virtual machine's
fastest route through CP to the DASD; further, significant amounts of real and
expanded storage are used by CP on the virtual machine's behalf to “cache the
DASD blocks” (that is, keep the data space pages resident).

To write DASD blocks, the reusable server kernel performs MVCL to the
appropriate pages in the appropriate data space and follows the MVCL with
MAPMDISK SAVE. After MAPMDISK SAVE, the reusable server kernel waits
in a thread-blocking fashion for the save-complete external interrupt to arrive.
Control returns to the calling thread only when the write is entirely complete.

The techniques described above are used by the server kernel on the server
application's behalf; see Figure 3 on page 32.%? In addition, all code and data
structures involved in this scheme exhibit the execution traits desired in a

10 The reusable server kernel contains no support for linking storage group minidisks at server startup or performing the CMS FORMAT
and RESERVE commands against minidisks prior to attempting to add them to a storage group for the first time. These initialization
processes need to be taken care of by the server operator using traditional methods. Further, the reusable server kernel DASD
engine requires that its storage group minidisks be formatted at 4 KB and reserved. It will not operate upon minidisks that do not

meet these criteria.

11 For FBA DASD, each minidisk must start at a multiple-of-eight block number on the real DASD volume for data space mapping to

work correctly.

12 When VM Data Spaces are not available, the reusable server kernel uses DIAGNOSE X'250' in asynchronous, MDC-enabled
fashion instead; if for some reason DIAGNOSE X'250' doesn't work, then DIAGNOSE X'A4' is used.

© Copyright IBM Corp. 1999, 2001 31

Storage Group 0 SG 1 SG n

— Read via MVCL; write via MVCL then MAPMDISK SAVE
— APIs for I/0 and admin/maint operations
— Commands for admin/maint operations

3F0 Data Space
0 —
1 pgs 0
data :'7 to 48
49
pgs 49
2E4 — to 146
0
2 j—
data —
— pgs 147
to 215
more than
99 — 1DS if
needed
1A32 Disk Blks
0 -
3F0 49
2 2E4 98
1A32 69
data e
216
70
I/0 engine:

T

Prrrrrrrt

server threads

Figure 3. Reusable Server Kernel DASD

multithreaded CMS model: they are all thread-blocking, thread-synchronous,
31-bit-capable facilities.

Limits

32

The reusable server kernel DASD subsystem exhibits these limits:
e The maximum number of storage groups is 1024.

¢ The maximum number of data blocks per storage group is X' FFFFFFFF' (16
TB).

¢ The maximum number of minidisks per storage group is 13,000.

z/VM V3R1.0 RSK Programmer's Guide and Reference

e The total number of dataspace-mapped DASD blocks cannot exceed
X'FFFFFFFF' (16 TB).=

Modes of Operation
A given storage group can be started in one of two 1/0O modes:

e Block R/O: the server program can read the DASD blocks but cannot write
them. It is permissible for one or more of the minidisks in the storage group to
be linked read-only.

e Block R/W: the server program can read or write the DASD blocks individually.
All minidisks in the storage group must be linked read/write.

Each storage group's I/O mode is selected individually.

Programming Interfaces

Management and control of storage groups can be done through a set of storage
group APIs. Callable APIs are provided to:

e Create and delete storage groups

e Vary storage groups online and offline

e List and query the defined storage groups

* Perform storage group I/O

e Find the number of a started storage group, given its name

These entry points all begin with name ssSgp and are described later in this book.

Administrator and Operator Considerations

A set of operator commands implements a subset of the storage group APIs.
Commands are available to perform these functions:

e Create and delete storage groups
e Start and stop storage groups
e List and query the defined storage groups

For more information, see Chapter 14, “Command Descriptions” on page 85.

Creating a Storage Group

To build up a storage group from scratch, the server administrator performs these
steps:

13 The server kernel automatically switches to DIAGNOSE X'250"' when this limit would be exceeded.

Chapter 3. DASD Management 33

Table 14. Building a Storage Group

Step Task Command Description

Page

1 Select some minidisks to CP LINK Format each minidisk at 4 KB

make up the storage group. CMS FORMAT blocksize and reserve it. Make sure
the server's virtual machine links the
minidisks at startup time, for
example, through PROFILE EXEC or
PROFILE RSK. If FBA DASD is used,
make sure each minidisk starts on a
multiple-of-eight block boundary on
the real FBA device.

N/A

2 Create the storage group SGP CREATE This informs the reusable server
kernel of the minidisks' existence and
instructs it to treat them together as a
storage group. The server kernel
records this information in the
storage group configuration file.

180

3 Start the storage group SGP START This makes the storage group
available for I/O and the ssSgpRead
and ssSgpWrite APIs can be used
against it. You will probably want to
put the SGP START command in
PROFILE RSK so that the storage
group starts each time the server
starts.

184

Changing the Minidisks in A Storage Group

To change the minidisk configuration of a storage group use these steps:

Table 15. Changing the Minidisk Configuration

Step Task Command Description

Page

1 Stop the storage group SGP STOP This brings the storage group offline.

185

2 Delete the storage group SGP DELETE This removes the storage group's
definition from the storage group
configuration file.

181

3 Create the storage group SGP CREATE This records the new storage group
anew definition in the storage group
configuration file.

180

4 Start the storage group SGP START This makes the storage group
available for I/O.

184

Deleting A Storage Group

To delete a storage group use these steps:

Table 16 (Page 1 of 2). Deleting a Storage Group

Step Task Command Description

Page

1 Stop the storage group SGP STOP This brings the storage group offline.

185

34 z/VM V3R1.0 RSK Programmer's Guide and Reference

Table 16 (Page 2 of 2). Deleting a Storage Group

Step Task Command Description Page

2 Delete the storage group SGP DELETE This removes the storage group's 181
definition from the storage group
configuration file.

Chapter 3. DASD Management 35

36 z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 4. File Caching

Servers having file-read-intensive workloads will find it beneficial to cache
frequently-read files. Usually the application relies upon CMS's FSREAD cache
and minidisk caching to achieve good performance, but these facilities have their
limits.

To overcome these limits and extend the caching facilities available to the server
writer, the reusable server kernel offers a file caching scheme based on VM Data
Spaces.™* A file cache is simply a data space whose contents -- files -- are
controlled for the server by the server kernel. The server author decides the
number and sizes of file caches he creates; he has both APIs and operator
commands at his disposal for both creating and deleting file caches. Using APIs
alone, the server program requests that files be cached in these data spaces; in
response to the server's requests, the server kernel reads files using conventional
CMS file APIs and holds them in data spaces, removing them either when they
become stale or when data space storage becomes constrained. When storage
constraints are an issue, the server kernel removes files in LRU (least recently
used) fashion. Such removal is not visible to the server program.

Managing the Set of Caches

To create a file cache, the server operator can issue the CACHE CREATE command,
or the server itself can call entry point ssCacheCreate. The cache is given an
eight-byte name which the server kernel uses unchanged in a call to
ssMemoryCreateDS to create the corresponding data space. Thus, cache names
must be unique among all subpools the server kernel manages. The size of the
cache is specified in pages.

To delete a cache, use either the CACHE DELETE command or entry point
ssCacheDelete. The command or API call will not complete until all cached files are
closed. Further, once the deletion has started, the caching of new files will not be
permitted.

To obtain statistical information about a particular file cache, the server can call
ssCacheQuery. Similarly, the server operator can issue the CACHE LIST command to
see tabular output reflecting statistical information about all of the caches known to
the server kernel.

For more information on how the server kernel maintains monitor data for each file
cache, see Chapter 13, “Monitor Data” on page 79.

14 If VM Data Spaces are not available, the file caching facilities of the reusable server kernel do not work.

© Copyright IBM Corp. 1999, 2001 37

File Operations

To cache a file, the server calls entry point ssCacheFileOpen, supplying the name
of the file to be cached. Any name acceptable to CSL routine DMSOPEN can be
used. The server kernel keeps track of cached files using these
DMSOPEN-acceptable names. In response to the call, the server kernel loads the file
into the cache, making it ready for reading through another entry point,
ssCacheFileRead; in addition, if the server kernel was able to load the file
contiguously into data space storage, it informs the caller of this, returning to it the
ALET and address the server can use to access the cached file directly. In any
case, ssCacheFileOpen returns the size in bytes of the cached file. Finally, note
that the file can be opened multiple times simultaneously; this permits
open-read-close logic to be applied freely on a per-client basis.

Once the server has opened the file, it can read the file's data through one of two
methods:

¢ |f the file was loaded contiguously, the server can enter AR mode and read the
data directly from the data space, using the ALET, address, and length
returned by ssCacheFileOpen.

 |If the file was not loaded contiguously, or if the server author chooses not to
use AR mode, the server can call entry point ssCacheFileRead to read the data.
This entry point's inputs are simply a file token, a zero-origin byte offset, and a
length. It simply reads the cached data into the buffer passed by the caller.
The server kernel permits multiple ssCacheFileRead calls to be in progress
simultaneously against a given file.

When the server is done reading the file, it issues call ssCacheFileClose. The file
remains in the cache for subsequent use, unless it becomes stale or is pushed out
because of storage contention.

Transformation

S

Recognizing that the server is likely to need to perform code page transformations
on the files it manipulates, the server kernel includes a translation function with its
caching support. When the server opens a file, it specifies a translation table to be
applied to the file's data as it is loaded into the cache. The translation table can
come from these places:

* The server kernel offers an entry point, ssCacheX1TabSet, which the server can
call to identify a translation table that should be eligible for use as part of file
loading. The table is known by an integer identifier and is nothing more than a
256-byte table to be applied to the file's data using the Translate (TR)
instruction. The integer identifier supplied to ssCacheX1TabSet is also one of
the inputs to ssCacheFileOpen.

» For the server author's convenience, the server kernel predefines certain

tables:
Table ID Table Function
0 No translation at all
1 1047 to 819 (EBCDIC to ASCII)
2 819 to 1047 (ASCII to EBCDIC)

38 z/VM V3R1.0 RSK Programmer's Guide and Reference

The server kernel recognizes these tables' identifiers without the server having
to invoke ssCacheX1TabSet first.

Just as it might have to perform code page translation on files it serves to clients,
the server might also have to perform record boundary delimiter transformations.
For example, a Unix client might want the records to be delimited by a line feed
(X'0A"), while a DOS client might want a carriage return and line feed (X'0ODOA")
at the end of each record. Depending on the file's contents, it might even be
appropriate not to insert any delimiters at all - a .JPG file, for example, falls into this
category. Recognizing this, the server kernel lets the caller tell ssCacheFileOpen
what should be done about record delimiting. Both line-end marker and prefixed
record-length schemes are supported.

Example

Suppose that an HTTP server needs to serve file INDEX HTML
VMHOME : ENEBADM. VMPAGE to a browser. As part of serving this file to the browser, the
HTTP server will need to translate the file's data from EBCDIC to ASCII and will
need to insert a CR-LF pair (X'ODOA") after each record. To serve the file, the
server would call ssCacheFileOpen, requesting that appropriate data translation and
record massaging be done as part of the load into the cache. The server kernel
would return a file token as an output of ssCacheFileOpen, and if the file had been
loaded contiguously into the data space, it would also return the ALET and address
of the data space buffer in which the file resides. Finally, if the load is successful,
ssCacheFileOpen also returns the size in bytes of the loaded, transformed file.

The server can read the file's contents using either ssCacheFileRead or AR mode.
However, if all that is needed is to send the file's contents to the browser, the
server can just call ssClientDataPut, passing it the ALET, address, and length
returned by ssCacheFileOpen.

After the file has been sent, the server issues ssCacheFileClose. The file remains
in the cache for the next client.

Stale Data

The server kernel's file caching scheme accommodates the notion that file contents
change over time and that cached information can become stale as a result. When
the server calls ssCacheFileOpen, the server kernel checks the file's update time
and compares it against the update time of the cached copy. If there is a
discrepancy, the file is reloaded. The currently cached copy -- now stale -- is
disposed of according to whether it is still in use (that is, is still open); if it is not in
use it is dropped immediately, but if it is still open it is marked as stale and dropped
when the server finally closes it. This scheme preserves consistency for open files
while providing a means for new opens to see the latest version of a file.

Cache Utilization

It is important to recognize that the server kernel can have more than one copy of a
file in a cache at one time. This can happen in these situations:

e |f a file is loaded into a cache using several different code page translations or
several different record delimiting schemes, a cached copy will be kept for each

Chapter 4. File Caching 39

such representation requested. For example, if INDEX HTML were opened using
EBCDIC-to-ASCIl and CR-LF delimiting, and then it were opened again using
no code page translation and CMS two-byte-length record prefixing, the server
kernel would keep both copies in memory.

If a cached file is still open, it will not be dropped from the cache, even if the
server kernel detects that it has become stale. The stale file will not be
dropped until it is closed.

Constraints

40

The sever author and administrator should keep these file caching constraints in
mind:

File cache names are used directly as input to ssMemoryCreateDS. The server
writer and administrator must work to avoid name conflicts.

The number of files that can be held in a cache is not strictly limited, but the
overall size of a file cache is limited to 2 GB (the size of a data space). This
means that a transformed file cannot exceed 2 GB. Note that multiple file
caches are supported.

The number and aggregate size of data spaces creatable by the server is
controlled by XCONFIG ADDRSPACE in the server virtual machine's CP directory
entry.

Files whose transformed size would be greater than 16 MB (megabytes) are
never cached contiguously.

z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 5. Authorization

Overview

Many servers appear to their clients as access methods for server-held objects.
File system servers are a common example of these. For example, the CMS
Shared File System implements an object class called file supporting a certain set
of operations and an object class called directory supporting another set of
operations. The users of the Shared File System transmit requests to an SFS
server, asking the server to perform operations on these objects. The SFS server
performs the operations and returns appropriate responses to the clients. No
operations are possible against SFS-held objects other than those defined on
objects of class file or directory.

Servers implementing such access methods usually require that the operations
requested by clients be performed on the objects if and only if certain authorization
guidelines are met. Consider again the Shared File System: to write to a file, a
user must have write authority to it.!> To support this checking of operations, the
Shared File System contains its own authorization engine for managing the
authorization rules. The authorization model used by the CMS Shared File System
is built around objects, users, and actions; all of the interfaces to the authorization
engine serve to manipulate and interrogate a rule base which records “who can do
what to whom.” Some of these interfaces, such as the GRANT AUTHORITY and
REVOKE AUTHORITY commands, are externalized. Others are internal-only interfaces
for the server's exclusive use.

The general model for authorization exemplified by the Shared File System applies
to many different kinds of servers. To ease the development burden of the server
writer, the reusable server kernel provides a set of APIs implementing a
general-purpose authorization engine. The authorization model implemented by the
reusable server kernel is an object-user-action model, just like the one implemented
by the Shared File System. To use the reusable server kernel's authorization
facility, the server author calls the API, performing such actions as defining an
object class, defining a particular object, permitting a user to perform an operation,
and testing whether an operation is permissible. A set of commands, intended for
operator use, parallels the APIs provided.

The reusable server kernel authorization engine treats object classes, object
names, user names, and permissions as abstract entities. It does not associate
any particular meaning with these items. It merely facilitates the implementation of
an authorization strategy by providing a rule engine capable of building,
maintaining, and interrogating a rule base describing a relationship of objects,
users, and actions. The object classes and operations defined, the objects defined,
the users defined, and the permissions granted are left for the server writer to
decide.

15 |n truth, to open a file for write, the user must have write authority to it, even if he never actually writes to the file.

© Copyright IBM Corp. 1999, 2001 41

Entry Points

The reusable server kernel authorization API offers entry points that perform a
number of different operations on the rule base. In particular, these are some of
the programming interfaces available:

Table 17. Programming Interfaces

Programming Interfaces Description Page

ssAuthCreateClass Creates an object class and associates a set 223
of operations with it.

ssAuthCreateObject Creates a named object as an instance of a 225
particular object class.

ssAuthTestOperations For a given user, object, and set of operations, 227
determines which of the specified operations
are permissible.

ssAuthPermitUser Adds, modifies, or deletes a specific rule in the 229
rule base.

ssAuthDeleteUser Removes all rules for a given user from the 231
rule base.

ssAuthDeleteClass Removes all objects of a given class from the 240
rule base and optionally removes the class
from the rule base.

ssAuthDeleteObject Removes all rules for a given object from the 250
rule base and optionally removes the object
from the rule base.

A set of queries and some maintenance APIs are also provided.

Naming Conventions and Other Limits

To name objects, users, classes, and permissions, the authorization API uses
character strings composed from an unrestricted alphabet.®

Table 18 describes other conventions related to the naming of these items:

Table 18. Authorization APl Naming Conventions
Iltem Format Length
Object \% 1-256
User \Y 1-64
Class F 8
Action F 4
Note:
¢ The authorization API supports a maximum of 32 operations per object class.

16 “Unrestricted alphabet” means that any of the 256 8-bit code points can appear in these names.

42 z/vM V3R1.0 RSK Programmer's Guide and Reference

Group Authorization Considerations

The reusable server kernel's authorization model and API extend easily to group
authorization situations.*” To implement a group scheme, the programmer can
perform the mapping of user ID to group name outside the scope of the reusable
server kernel's authorization APl and use the group names as “user IDs” in the
reusable server kernel authorization API calls. In cases where group authorization
provides acceptable security, using the authorization API in this way reduces the
size of the authorization data and thereby decreases the time needed to search it.

Persistent Storage of Authorization Data

The reusable server kernel keeps the authorization database in several disk files.
These disk files let the authorization data persist from one invocation of the server
program to the next.

The general idea is that the authorization database is divided into several files:

Table 19. Authorization Data File Format

File Description Page
Format
Data Contains class, object, user and rule definitions. The records 385

in this file are chained to one another to build up logical
groupings, such as the set of rules associated with a given
object or the set of objects belonging to a given class.

Index Contains hash tables that partition the data file records into 387
equivalence classes (that is, hash buckets) to improve the
performance of searches.

Log Contains all tracking of the writes to the index and data files 388
for recovery purposes.

The reusable server kernel is able to keep its authorization data in any of these
disk repositories:8

e On CMS minidisks
¢ In the CMS Shared File System

All of the authorization files must be kept in the same kind of repository. Mixing
repositories is not permitted.

Recognizing the critical nature of authorization data, the reusable server kernel
manages its authorization files such that the authorization database can be
recovered (that is, its internal consistency can be restored) if some kind of failure
occurs. The management and recovery scheme used is a function of the repository
in which the data files reside. When CMS minidisks are used, the reusable server
kernel keeps twin copies of the authorization database and also keeps a log file to
enable recovery after a failure. When the CMS Shared File System is used, just

17 In group authorization, access rights are extended to users not based on their individual identities but rather on their membership
in a group of some kind. Unix and VMS are two systems where file authorization is based partially on users' organization into

groups.

18 Configuration parameter AUT_LOCATION file tells the reusable server kernel where the data is being kept.

Chapter 5. Authorization 43

one copy of the authorization database is kept and the Shared File System's
commit/backout facilities are exploited to maintain consistency.

When the reusable server kernel starts, it initializes the authorization data base
(makes it completely empty) if it appears that the database has never been
initialized. This assessment is made using the following criteria:

e Shared File System: if the index file appears not to be initialized, then an empty
index is written.

¢ Minidisks: if the log file appears not to be valid, or if the log file appears valid
but the index file appears not to be initialized, then an empty index is written.

You should back up your authorization index and data files frequently enough so
that you can restore them without loss of data in case they are initialized
accidentally.

The following sections give more specifics on the details of the various repositories.

Using CMS Minidisks
To keep the authorization files on minidisks, set configuration parameter
AUT_LOCATION appropriately and supply names for:

e Copy 1 of the data file (configuration parameter AUT_DATA_1),

e Copy 2 of the data file (configuration parameter AUT_DATA_2),

e Copy 1 of the index file (configuration parameter AUT_INDEX 1),
e Copy 2 of the index file (configuration parameter AUT_INDEX 2),
e The authorization log file (configuration parameter AUT_LOG).

These files do not all have to be on the same minidisk; you can spread them
across minidisks if you want.'® The only constraint is that for each minidisk on
which authorization files reside, there must be no open-for-output files on the
minidisk other than the authorization files themselves. In other words, do not put
any of your server's other output files on the same minidisk with authorization data
files. If this constraint is not observed then the reusable server kernel's commit and
recovery logic will not work and if a failure occurs you might end up with
unrecoverable authorization data.

When minidisks are used, the reusable server kernel guarantees consistency by
using the log file to record changes that will be made and then applying the
changes to the two copies sequentially. If an entire update does not complete
successfully, the reusable server kernel uses the log file to decide how to recover
the consistency of the authorization data and make the two copies identical again.
If the update was completely applied to the first copy and then the update of the
second copy failed, realigning the two copies does not lose the update. If the
update was never completely applied to the first copy, the update will be backed
out.

19 |n fact, it would be a good idea to put the files for copy 1 on one physical DASD pack and the files for copy 2 on a different
physical DASD pack.

44 z)vM V3R1.0 RSK Programmer's Guide and Reference

Using the CMS Shared File System

To use the CMS Shared File System, set configuration parameter AUT_LOCATION
appropriately and supply names for:

e Copy 1 of the data file (configuration parameter AUT_DATA_1),
e Copy 1 of the index file (configuration parameter AUT_INDEX 1),

The data and index files need not reside in the same directory or even the same
file pool server.?’ The directories in which the files reside can be accessed
directories or unaccessed directories.

When the Shared File System is used, the reusable server kernel does not
maintain a second copy of the data and index files and it does not keep a log file; it
ignores the configuration parameters associated with these extra files (configuration
parameters AUT_DATA_ 2, AUT_INDEX_ 2, and AUT_LOG). This is made possible
because the Shared File System supports commit and backout semantics; the
reusable server kernel does not have to manage recovery on its own.

When the Shared File System is used, the reusable server kernel uses this
technique to maintain consistency of the authorization data:

1. At startup, the reusable server kernel gets a work unit ID and opens the two
files on that work unit.

2. Each time an API call changes the database, the reusable server kernel writes
the changes to the index and data files and then commits the work unit.

3. If one of the writes fails or the commit fails, the reusable server kernel backs
out the work unit.

This method guarantees that the index and data files are always committed
together and that the committed copies are always consistent with one another.

Migrating Among Repositories
To migrate your authorization data to the Shared File System from minidisks, follow
the instructions in Table 20.

Table 20. Migrating Authorization Data from Minidisks to SFS
Step Description Command Page

1 Make sure the server shuts down normally so that the two copies of SERVER STOP 179
authorization data are each internally consistent and identical to one
another.

2 Move one copy to the desired Shared File System server(s) and CMS's n/a
directory(ies). COPYFILE

3 Change the reusable server kernel's AUT_ configuration parameters to Use XEDIT to 74
reflect the new names and locations of the authorization data. change

PROFILE RSK.

Migrating from the Shared File System to minidisks is a little more complicated;
follow the instructions in Table 21 on page 46.

20 |f you put the two files in two different servers, each server must be at least VM/ESA Version 1 Release 1.0 or later.

Chapter 5. Authorization 45

Table 21. Migrating Authorization Data from SFS to Minidisks
Step Description Command Page
1 Duplicate your index and data files so that you have two identical copies CMS's n/a
of each (four files in all). COPYFILE
2 Install the copies on the target minidisks. CMS's n/a
COPYFILE
3 Using CMS Pipelines, an EXEC, XEDIT, or some other tool, make a file n/a
of the following format and content (this will be the initial log file):
e RECFM F
e LRECL 256
e Put one record in the file. The first twelve bytes of the record should
be X'000000020000000200000000"'. The content of the remainder
of the record is unimportant.
Install this file on the target minidisk.
4 Update your reusable server kernel configuration parameters to point to Use XEDIT to 74
the new target repository and update the names of the index, data, and change
log files. PROFILE RSK.
Parallelism

The reusable server kernel lets multiple threads read the authorization data
simultaneously but requires updating threads to serialize and perform their work
exclusively of all other threads (in other words, either multiple readers are allowed
or one writer is allowed).

Administrative Commands

The reusable server kernel provides a service, called AUTH, which provides a
command interface to many of the authorization APIs. This command set is useful
in thses circumstances:

e Commands to manipulate the authorization database can appear in PROFILE
RSK and be issued each time the server starts.

e An operator can manipulate the authorization database by sending
authorization commands to the AUTH service through the CP MSG command or by
typing them on the server console.

For more information on the authorization command set, see Chapter 14,
“Command Descriptions” on page 85

Other Services' Use of Authorization

46

The presupplied services and line drivers are capable of using the authorization
database as a way to protect their command sets. For example, the AUTH service
-- that is, the implementer of the AUTH command set -- offers a means by which the
server administrator can instruct it to examine the authorization database to
determine whether a certain user is permitted to issue AUTH commands. The
starting and stopping of author-supplied services can be similarly protected.

z/VM V3R1.0 RSK Programmer's Guide and Reference

Overview

Activation

As shipped, all such controls are inactive, that is, no permission checking is in
effect. The following sections describe how such authorization checking can be
activated.

The basic idea is that certain services and line drivers interrogate a corresponding
configuration parameter to decide whether to check authorizations for the command
sets they implement. When a service or line driver's authorization configuration
parameter is set ON, the service or line driver calls ssAuthTestOperations each time
it handles a command. The purpose of this call is to determine whether the
requesting user has permission to issue the prospective command. If the call to
ssAuthTestOperations succeeds, the line driver or service will attempt the
requested operation. Table 22 generally illustrates how a line driver or calls
ssAuthTestOperations.

Table 22. Line Driver and Service Calls to ssAuthTestOperations

Coordinate Value

Object Name of the service being manipulated.

User The user ID attempting to manipulate the
service.

Action For a start, STRT. For a stop, STOP. For
connection reporting, RPRT. For actual
use thereof, EXEC.

To activate authorization checking for line drivers and services, perform the these
initialization steps with respect to the authorization database:

Table 23 (Page 1 of 2). Activating Authorization Checking for Services and Line Drivers

Step Task Command Description Page
1 Create an object class to AUTH CRECLASS The name of the object class 93
which objects representing is not important, but
services will belong. operations STRT, STOP, RPRT,
and EXEC must be defined on
objects of the class.
2 Create an authorization AUTH CREOBJECT You should create the new 94
object corresponding to the object as a member of the
service that will be protected. class you just created with
AUTH CRECLASS. The name of
the new object should match
the name of the service as it
was given in the
ssServiceBind API call.
3 Grant privileges for each AUTH PERMIT Arrange for the user ID to 102
user who will be permitted to have permission to perform
START the service. the STRT operation on the

object that represents the
service.

Chapter 5. Authorization 47

Table 23 (Page 2 of 2). Activating Authorization Checking for Services and Line Drivers

user who will be permitted to
use a given service.

have permission to perform
the EXEC operation on the
object that represents the
service.

Step Task Command Description Page
4 Grant privileges for each AUTH PERMIT Arrange for the user ID to 102
user who will be permitted to have permission to perform

STOP the service. the STOP operation on the
object that represents the
service.
5 Grant privileges for each AUTH PERMIT Arrange for the user ID to 102
user who will be permitted to have permission to perform
enable a line driver's the RPRT operation on the
connection reporting feature. object that represents the
service.
6 Grant privileges for each AUTH PERMIT Arrange for the user ID to 102

Once the authorization database has been set up, it remains to inform line drivers
and services that they should actually check the authorization data you've
configured. This is accomplished by using the CONFIG commands:

e To enable line drivers' checking of your newly-created authorization records,
issue CONFIG AUTHCHECK_LD ON. When you do this, each line driver will handle
a given user's START or STOP commands only if the authorization data permits it.

e To inform a given service that it should check your newly-created authorization
records, set the service's appropriate configuration parameter (see Table 24
and Table 31 on page 75).

Table 24. Authorization Configuration Parameters

Service Parameter Page
AUTH AUTHCHECK_AUTH 118
CACHE AUTHCHECK_CACHE 119
CMS AUTHCHECK_CMS 120
CONFIG AUTHCHECK_CONFIG 121
CP AUTHCHECK_CP 122
ENROLL AUTHCHECK_ENROLL 123
MONITOR AUTHCHECK_MONITOR 125
SERVER AUTHCHECK_SERVER 126
SGP AUTHCHECK_SGP 127
TRIE AUTHCHECK_TRIE 128
USERID AUTHCHECK_USERID 129
WORKER AUTHCHECK_WORKER 130

All of the aforementioned configuration parameters can be set in PROFILE RSK each
time the server starts. For more information, see “PROFILE RSK” on page 72.

48 z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 6. Enrollment

One problem common to many servers is the notion of enrolling users. In the
abstract, this problem is nothing more than implementing or exploiting some kind of
indexed access method. Users' records are kept in a repository of some kind and
inserted, removed, and retrieved using the chosen access method, the user
identifiers serving as indices.

Recognizing this commonality, the reusable server kernel implements an indexed
access method suitable for use in storing enrollment data. The server kernel offers
an API for programmed manipulation of enrollment sets -- record insertion, deletion,
and retrieval, to name a few operations -- and it offers a corresponding command
set that lets the server operator perform these operations easily. The command set
is implemented as a service, so it is available through any of the server kernel's
line drivers - CONSOLE, MSG, and so on.

The reusable server kernel stores related enrollment records together in an
enroliment set. Each enrollment set bears an eight-byte name; the server operator
refers to an enrollment set by that name when he uses the ENROLL command set,
and the server author refers to an enrollment set by that same name when he uses
the enrollment API. The server kernel can manage multiple enroliment sets
concurrently.

To ensure good performance, the reusable server kernel exploits VM Data Spaces
to hold enroliment sets. When the server kernel is instructed to make an
enrollment set ready for use, it reads the enroliment records from a Shared File
System file into a VM Data Space, organizing them in the data space for quick
access. Each enrollment set resides in its own data space, and a data space being
used for enrollment contains nothing but records of that enrollment set. Note that
the reusable server kernel's enrollment facility requires the underlying processor to
support VM Data Spaces. Processors not offering VM Data Spaces cannot support
the enrollment facility.

Because a data space can be up to 2 GB in size, and because z/VM lets a single
virtual machine manage many such data spaces concurrently, the number of
enrollment records the reusable server kernel can manage has no limit, practically
speaking. The data structures used ensure that the server kernel can hold several
hundred thousand enrollment records in a single data space without appreciable
lookup, insertion, or replacement delays.

As the enrollment records change, the reusable server kernel appends information
to the corresponding SFS file, said appended records being indicative of the
changes that are occuring against the enrollment set. At an appropriate time, the
operator or the server program itself indicates that it is time to commit the changes;
in response to this, the server kernel uses CSL routine DMSCOMM to commit the
changes to the SFS file. Each enrollment set's corresponding SFS file is open on
its own work unit, each such work unit being used for no other purpose than 1/O to
a single enrollment file.

Eventually the server operator or server program determines that activity to an
enrollment set is complete and instructs the reusable server kernel to unload the
enrollment data. The server kernel closes the corresponding SFS file, deletes the
data space, and the enrollment set is thereby closed. If the server program

© Copyright IBM Corp. 1999, 2001 49

terminates and the enrollment set is still open, the server kernel closes it
automatically before terminating, committing any uncommitted changes. If the
Shared File System should ever indicate that it cannot commit changes, the
reusable server kernel backs out the changes, using SFS's rollback support.

Because of the cumulative nature of the SFS file that holds an enroliment set, it is
occasionally helpful to remove redundant information from such a file. An EXEC to
perform such cleanup is provided. When an enrollment set is being cleaned, it
cannot be in use for any other purpose; it must be unloaded prior to being cleaned
and reloaded afterward.

Each enrollment record consists of a 64-byte key and a corresponding piece of
enrollment data. The reusable server kernel imposes no structure on the
enrollment data itself; the structure of the enroliment data is left to the server
author. However, the server kernel does impose the restriction that an enrollment
record cannot contain more than 65,450 bytes of data (this limit comes from the
record-length limit of CMS file systems). Zero-length data is permitted on
enrollment records.

Last, recognizing the utility of a general-purpose indexed access method capable of
holding data on this scale, the reusable server kernel implements transient
enroliment sets. A transient enrollment set is empty when opened, is never written
to disk, and all memory of it is lost when it is closed. While it is open, though, all of
the server kernel's indexing and retrieval facilities are available, and VM Data
Spaces are exploited just as they are for permanent enrollment sets. This gives
the server author a way to keep track of large numbers of tagged, transient data
items concurrently. Said data items can be stored in an enrollment set, where the
reusable server kernel keeps them in a VM Data Space until they are again
requested by the server program. Note also that because transient enrollment data
is never written to a CMS file, it is not necessary for the reusable server kernel to
limit the data length quite so much. For transient enrollment sets, the amount of
data that can be stored in a given record is limited to 16 MB - the maximum
amount movable through the Move Long (MVCL) instruction.

Programming Interfaces

50

The server program can use the following programming interfaces to manipulate
enrollment sets:

Table 25 (Page 1 of 2). Enroliment APIs

Programming Interface Description Page
ssEnrol1Commit Commit changes to an enrollment set. 274
ssEnrol1Drop Close a permanent enrollment set, either 276

committing or rolling back the uncommitted
changes, or destroy a transient enroliment set.

ssEnrollList Generate a list of the enrollment sets currently 278
loaded.
ssEnrol1Load Load an enrollment set from an SFS file into a 280

VM Data Space, or initialize a transient
enroliment set.

ssEnrol1RecordGet Retrieve a record from an enroliment set. 283

z/VM V3R1.0 RSK Programmer's Guide and Reference

Table 25 (Page 2 of 2). Enroliment APIs

Programming Interface Description Page
ssEnrol1RecordInsert Insert a record into an enrollment set. 285
ssEnrol1RecordList Generate a list of the indicies of all the records 287
in the enrollment set.
ssEnrol1RecordRemove Remove a record from an enroliment set. 289
Operator Commands
The ENROLL service implements a set of operator commands:

Table 26. Enrollment Commands

Command Description Page
COMMIT Commits changes to an enroliment set. 158
DROP Unloads an enrollment set from a data space. 159
GET Retrieves a record from an enroliment set. 160
INSERT Inserts a record into an enrollment set. 161
LIST Generates a summary of the loaded enrollment sets. 162
LOAD Loads an enrollment set into a data space. 163
RECLIST Generates a list of the keys of the records in an enroliment 164

set.
REMOVE Removes a record from an enroliment set. 165

Chapter 6. Enrollment 51

52 z/vM V3R1.0 RSK Programmer's Guide and Reference

 Chapter 7. Indexing by Prefixes

Overview

The reusable server kernel's enrollment API provides a simple indexed access
method that lets the server author use a fully-formed index to return exactly one
record whose key matches the supplied fully-formed index. This solves the
enrollment problem well but ignores a large class of indexing problems relevant in
server development. In particular, it ignores the problem of returning a set of
records whose keys are matched by a prefix the caller supplies. This problem
appears in many situations, such as telephone directory lookup or web page
indexing.

The reusable server kernel contains APIs that let the server application build and
interrogate indices that permit the retrieval of record sets according to lookup by
prefix. For each such index, the reusable server kernel APIs provide insertion and
lookup operations, identifying the inserted or retrieved records by record number
(the indexing API holds onto record numbers, not records themselves). The
reusable server kernel keeps each such index in its own VM Data Space and lets
multiple RSK-based service machines access the indices concurrently. An index
does not persist across invocations of the server program; the server must rebuild
the index each time it starts.

More specifically, the provided APIs are:?*

e ssTrieCreate: creates an index. The caller specifies a name for the index and
the size (in pages) for the index. The reusable server kernel creates a data
space to hold the index and returns the ASIT and ALET to the caller.

e ssTrieDelete: destroys an index. The reusable server kernel destroys the
corresponding data space.

e ssTrieRecordInsert: the caller supplies the index name, a record humber, and
the key to be associated with the record number. The reusable server kernel
inserts the record number into the index.

e ssTrieRecordList: the caller supplies an index name and a key prefix. The
reusable server kernel searches the index and returns a list of all the record
numbers whose corresponding keys match the prefix specified by the caller.

Example

Suppose a company phone book is contained in a CMS F-format file, with the
40-column employee name appearing in columns 36 to 75. An RSK-based phone
directory lookup engine might read the phone file into memory and then form an
index on the employee names. To index each record, the engine would call
ssTrieRecordInsert, identifying the record by number and supplying the 40-column
employee name field as the record's key. Once all records have been indexed, the

21 The APIs take their name from the data structure used to implement the index. This data structure is called a trie (rhymes with
sky) and is described, for example, in Aho, Hopcroft, and Ullman, Data Structures and Algorithms, Addison-Wesley, 1985, ISBN

0-201-00023-7.

© Copyright IBM Corp. 1999, 2001 53

server is ready to begin servicing lookup requests; given a prefix, the engine can
call ssTrieRecordList, thereby retrieving the record numbers of all the records
whose key matches the prefix of interest.

Index Sharing

An application using the trie APIs will probably work alone most of the time, that is,
its indices will be private. In this manner of operation, the application creates the
index by name and then refers to it by name when performing insertion and lookup
operations.

However, the reusable server kernel does provide the basic structure necessary for
the application to share an index among multiple virtual machines (for example,
worker machines). When ssTrieCreate creates an index, it supplies the caller with
the ASIT and ALET of the data space containing the index. If the application
desires to share the index with (for example) a worker machine, it should call CSL
routine DMSSPCP to permit the worker to access the index data space read/write and
then it should send the ASIT to the worker. The worker should use DMSSPLA to
generate its own ALET for the space and then call the trie APIs as appropriate,
identifying the index by ALET. Note that the worker must have read/write access to
the data space, even if it is performing only lookups. This is because the trie APIs
use storage in the data space to implement necessary locking primitives.

The reusable server kernel makes no attempt to recover from program checks that
will occur in worker machines if the owning virtual machine should delete the index.
When deletion of an index (that is, a call to ssTrieDelete) is required, the
application must take care to inform the workers and receive their
acknowledgements prior to deleting the index.

No Record Deletion?

For reasons of complexity, there is no ssTrieRecordDelete function. If it becomes
necessary to “delete a record,” the application should simply ignore that record's
number when it appears in the output of ssTrieRecordList.

Commands

A very simple built-in service, TRIE, offers a command, LIST, that can be used to
display pertinent information about the indices the server has created. For each
such index, the reusable server kernel displays the index name and ASIT, the index
size, the amount of data space storage actually being used, the number of records
being held, and the number of nodes in the trie.

There are no command equivalents for the ssTrieRecordInsert and
ssTrieRecordList entry points.

54 z/vM V3R1.0 RSK Programmer's Guide and Reference

Chapter 8. Anchors

The reusable server kernel lets the application set and query the value of an
application-wide anchor word. This is similar in intent to CMS's ANCHOR macro
and its ThreadSetUserData and ThreadQueryUserData CSL routines. Unlike
ANCHOR, the reusable server kernel facility is callable. Unlike the thread
functions, the reusable server kernel facility provides application-wide scope.

A server program would typically use the anchor services for holding the address of
some server-wide control block. This control block would typically be acquired
early in the server's life and the ssAnchorSet function would be called to record the
address of this control block. When the address of the control block is required,
the server can call ssAnchorGet to retrieve the control block's address.

Note also that ssAnchorGet returns the address and length of the buffer in which
the server may place data to be accrued by the CP monitor (APPLDATA -- DIAG
X'00DC"').

The reusable server kernel does not use CSL routines ThreadSetUserData or
ThreadQueryUserData. The server writer is free to use these routines as he wishes.

The ANCHOR macro works correctly only in virtual uniprocessor situations. It is
not recommended for use in virtual multiprocessor situations.

© Copyright IBM Corp. 1999, 2001 55

56 z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 9. Memory Management

Fast, efficient allocation and release of primary storage (memory) is vital to the
execution of a server program. CMS provides the CMSSTOR facility for storage
management; CMSSTOR works very well for single-threaded, assembler-only,
base-VCPU-only programs, but for multithreaded, parallel servers CMSSTOR

shows its limits. In particular, the following characteristics of CMSSTOR are
undesirable for server writers:

Base-only execution: though the macro can be invoked from non-base
processors, CMSSTOR actually runs on the base VCPU. This means that the
base VCPU becomes a serialization point for the server.

Assembler only: callable support is not provided.

Base address space only: CMSSTOR is not capable of managing storage in a
data space.

To overcome these difficulties, the reusable server kernel implements a “front end”
for CMSSTOR whose purpose is to relieve these constraints. The following entry
points are provided:

ssMemoryCreateDS: creates a data space and prepares to manage the storage
thereof. The caller sees the data space as a subpool.

ssMemoryAllocate: allocates storage, either from a data space or the primary
address space.

ssMemoryRelease: releases storage.

ssMemoryDelete: deletes a subpool and the corresponding data space.

For management of data space storage, the reusable server kernel storage
management facility provides an interface that lets the caller see a data space as a
subpool, as follows:

To create a data space and assign a subpool name to it, the caller invokes
ssMemoryCreateDS, passing it the subpool name to use and the size of the data
space. Subject to any constraints imposed by the virtual machine's XCONFIG
ADDRSPACE directory entry, the reusable server kernel creates the data space,
prepares to manage the storage therein, and returns to the caller the new data
space's ASIT and ALET.

ssMemoryCreateDS accepts a storage key and option array on input and passes
these directly to CSL routine DMSSPCC (Create Data Space). If the caller of
ssMemoryCreateDS supplies a zero-length option array, ssMemoryCreateDS uses
all of DMSSPCC's defaults, except that the data space is created SHARE.

Regarding establishing addressability to the data space, ssMemoryCreateDS
calls DMSSPLA with the WRITE and SYNCH options.

To allocate and release storage in the data space, the caller uses
ssMemoryAllocate and ssMemoryRelease, referring to the data space by its
subpool name.

To delete the data space, the caller uses ssMemoryDelete.

For the primary address space, the reusable server kernel storage management
facility is a front-end for CMSSTOR, as follows:

© Copyright IBM Corp. 1999, 2001 57

e For each subpool name ever used in a call to (that is, “seen by”)
ssMemoryAllocate, the reusable server kernel keeps track of storage allocated
through ssMemoryAllocate and storage released through ssMemoryRelease. In
other words, for each subpool, the reusable server kernel maintains a free
storage subpool cache that can be manipulated without serializing on the base
VCPU.2

* When ssMemoryATllocate is called, it performs the following steps in an attempt
to locate storage for the caller:

Step Description

1 The subpool's cache is checked, and if max_bytes needed can be
satisfied from there then the request completes.

2 CMSSTOR OBTAIN is consulted in variable fashion, the lower bound being
the largest qualifying size available in the cache (or min_bytes_needed,
if all cache pieces are too small) and the upper bound being
max_bytes_needed.

3 The request is satisfied from either the result of CMSSTOR OBTAIN or
whatever was available in the cache, whichever is larger.

¢ When ssMemoryRelease is called, the released storage is added to the
appropriate subpool cache, and if the free storage in the cache is above the
maximum free amount specified by the MEM& MAXFREE configuration parameter,
the cache is trimmed.

e When ssMemoryDelete is called, the cache for the named subpool is destroyed,
all storage being released through SUBPOOL DELETE.

The application should not call SUBPOOL DELETE for subpools that have been
manipulated through calls to ssMemoryAllocate and ssMemoryRelease; such an
invocation will confuse the reusable server kernel. Use ssMemoryDelete instead.

After the application ends, the reusable server kernel issues ssMemoryDelete for
each subpool cache remaining.

For more information on the forms of the subpool names used internally by the
reusable server kernel, see Appendix F, “Reserved Names” on page 395.

22 |n fact, non-trivial serialization occurs only when two VCPUs try to manipulate the same subpool.

58 z/vM V3R1.0 RSK Programmer's Guide and Reference

Chapter 10. Worker Machines

In some server situations, a single virtual machine performing complex operations
for lots of clients simultaneously is an inconvenient, risky, or unachievable
proposition. For example, if the clients are submitting code for the server to run as
the clients' proxy, it would be desirable for each such client submission to run in an
environment where it cannot tamper with, harm, or even innocently interfere with
the execution of other clients' similar submissions. Similarly, if the server must run
code that is under test or is at risk for terminating abnormally, the server designer
should have at his disposal a means for running such code in isolation. In some
cases, performance of the server might even improve if client work could be
distributed among a set of worker virtual machines, each such worker performing a
dedicated function for multiple clients simultaneously or perhaps working alone on
behalf of a single client. These are no doubt only a few of the possible scenarios
where the ability to run some of the server's work in other virtual machines would
be an attractive feature.

The reusable server kernel recognizes these situations and offers an API that lets
the server author distribute work among sets of subordinate virtual machines.
These subordinates, called workers, usually run on the same CP instance as the
main server. Sets of subordinates are defined to the main server via operator
commands, probably in PROFILE RSK. The server kernel establishes communication
connections to workers in response to API calls made by service instances;
however, the format and meaning of the data actually exchanged with workers is
left to the server author. In addition, when the workers are running on the same
CP instance as the main server, the server kernel uses the XAUTOLOG and FORCE
commands to log on and log off workers as appropriate. Finally, it should be
emphasized that the relationship with the worker machine is mediated entirely by
the service instance. The server kernel never shunts data directly from a client to a
worker or vice-versa.

Functional Overview

For organizational purposes, the server kernel organizes worker machines into
groups called classes. The virtual machines making up a class are all functionally
equivalent to one another as far as the server author is concerned. In other words,
when a service instance needs help from a worker, any member of the class will
do; the server author leaves it up to the server kernel to select a class member and
establish a connection to it. The server kernel is able to manage multiple worker
classes simultaneously.

To initiate a connection to a worker, a service instance calls entry point
ssWorkerAllocate, specifying the class from which the server kernel is to select a
worker machine and specifying some details about how the connection is to be
allocated. In response to this call, the reusable server kernel evaluates the load on
each worker in the class, selects the least-loaded member, and attempts to
establish an IUCV connection to it. The service instance can influence the
selection algorithm slightly; it can specify either that the server kernel should
XAUTOLOG another worker only if all currently logged-on workers are full, or it can
specify that the server kernel should route the new connection to an empty or
newly-autologged worker if possible, resorting to multiple connections to a single
worker only if the class is sufficiently active. When ssWorkerAllocate returns to its

© Copyright IBM Corp. 1999, 2001 59

caller, either the connection to the worker is in place or all reasonable attempts to
contact a worker have been exhausted.

Each member of a worker class -- in other words, each worker virtual machine --
has associated with it a maximum number of IUCV connections it can handle
simultaneously. The server author or server operator specifies this limit via
operator command when he adds the worker to the class. For the purpose of
worker machine selection, the load being imposed on a given worker is taken to be
the fraction of its IUCV capacity in use. For example, a worker capable of handling
four IUCV connections but handling only two at the moment is considered by the
server kernel to be 50% utilized, while if that worker were handling only one IUCV
connection at the moment, it would be considered to be 25% utilized. The load
distribution algorithm selects the least-loaded machine, using round-robin to break
ties.

If the caller requests it, the reusable server kernel can set alternate user ID and
security label (seclabel) information for the worker as part of selecting the worker.
To be able to set a worker's alternate user ID and seclabel, the controlling virtual
machine must have permission to issue Diagnose X'D4'. See z/VM: CP
Programming Services for more information. If you attempt to use the reusable
server kernel's alternate user ID machinery and your virtual machine does not have
the privilege necessary to issue Diagnose X'D4', your virtual machine will take a
program check. It is your responsibility to recover from this. Also note that the
reusable server kernel always uses the subcode X'04' form of Diagnose X'D4".

Once the connection to the worker is established, the service instance
communicates with the worker using the ssClient APIs and CMS IPC, just as it
would communicate with a client. More specifically, ssWorkerAllocate returns a
C-block that represents the connection between the service instance and the
worker. To write to the worker, the service instance uses ssClientDataPut followed
by a CMS IPC message telling the server kernel that it has generated new data to
be sent to the worker. Reading from the worker is similar; after it sees a CMS IPC
message informing it that new data are available, the service instance calls
ssClientDataGet to retrieve what the worker sent.

When a service instance is done using a worker, it notifies the reusable server
kernel via CMS IPC, just as it would do to notify a server kernel line driver that it
had finished with a client. The IPC message causes the server kernel to sever the
IUCV connection to the worker. In the event that the worker terminates the
connection first, the service instance is notified and must acknowledge the
connection loss, just as it must respond to a line driver when it learns of the loss of
communication to a client.

Server Configuration Considerations

60

The worker API uses IUCV to move data between the main server and the workers,
and when the workers are running on the same CP instance as the main server,
the worker APl employs the CP XAUTOLOG and FORCE commands to start and stop
worker machines. The following configuration considerations apply:

¢ The main server must be permitted to IUCV CONNECT to each worker machine.
There are many ways to arrange this. Perhaps the simplest way is to insert
IUCV ALLOW into the CP directory entry for each worker machine. Any method
that lets the connection proceed is just fine.

z/VM V3R1.0 RSK Programmer's Guide and Reference

 |f the workers are running on the same CP instance as the main server, the
main server virtual machine must be permitted to XAUTOLOG and FORCE worker
machines. XAUTOLOG requires class A or B or an entry in the CP directory entry
of each worker machine. FORCE requires CP class A.

Distributing Worker Machines

Some installations might choose to employ CSE (Cross-System Extensions) or
PVM (Passthru Virtual Machine) to distribute [IUCV and thereby run worker
machines on systems other than the local CP. For example, specialized hardware
might be available on some other processor, and a worker machine might be
placed there to handle requests originating from other systems.

On a per-class basis, the server operator decides whether the server kernel is to
manage workers as local or distributed. If the class is specified to be local, the
server kernel employs XAUTOLOG and FORCE to log workers on and off as necessary.
If the class is specified as distributed, the server kernel skips all such management
steps, merely attempting IUCV CONNECT and returning an error if the connection
attempt fails.

When a class is specified as distributed, the server operator or server designer is
responsible for making sure that the worker machines are autologged at an
appropriate time and that they are reset if errors or abends occur. A system
management tool such as IBM's Host Management Facilities/VM can be used for
this purpose.

When the server kernel issues IUCV CONNECT to connect to a worker machine, it
does so in a manner that can be distributed to other systems if CP is appropriately
configured. To make this work, the system administrator must specify DISTRIBUTE
IUCV YES in the CP system configuration file (SYSTEM CONFIG). He must also make
sure that the IUCV carrier (e.g., PVM) is working properly.

API Details

To allocate a connection to a worker machine, the service instance calls
ssWorkerAllocate, passing it a few pieces of information:

¢ The address of its own C-block
¢ The worker class in which the connection should be allocated
¢ An indication of how the server kernel is to select a worker:

— The instance can ask that the server kernel attempt to minimize the number
of worker machines logged on, routing connections to logged-on,
not-completely-full workers whenever possible, or

— The instance can ask that the server kernel route connections to empty or
not-yet-logged-on workers whenever possible, choosing partially-busy,
already-logged-on workers only when necessary.

* An integer specifying the number of workers the server kernel should try before
giving up and returning failure to the caller.

e Optional alternate user ID and seclabel information.

Chapter 10. Worker Machines 61

Subject to these parameters, the server kernel selects a worker machine and tries
to establish a connection to it. If the attempt fails, the server kernel will retry a
small number of times, and if the worker proves unreachable, the server kernel will
record this fact (so it can skip the worker when it handles subsequent
ssWorkerAllocate calls) and move to another worker. The server kernel will iterate
in this way until either the caller's specified number of tries expires or the whole
worker class proves unreachable. Normally the retry strategy is not a factor - the
usual case will be that the worker will be waiting for work and will accept the server
kernel's TUCV CONNECT request immediately.

When ssWorkerAllocate returns to the calling instance, it supplies two pieces of
information that are crucial to the instance's being able to interact with the assigned
worker:

e |t supplies a three-byte unsigned binary integer that uniquely identifies the
connection to the worker. This integer is called the connection ID. This integer
is returned in an unsigned four-byte buffer, the uppermost byte of said buffer
always being zero.

e |t supplies the address of a C-block that represents the connection to the
worker. This is called the worker C-block.

To detect activity on the worker connection, the instance issues QueueReceiveBlock
against its line driver queue, just as it normally does. Recall that under normal
circumstances, this API call completes when the instance's line driver sends a
message to the instance, informing the instance that something significant has
happened with respect to its client. When using the worker API, though, the
instance needs to be aware that messages indicative of worker activity will also
arrive on its line driver queue. The instance can detect that a received IPC
message is indicative of worker activity by examining the message type field of the
received IPC message. A message indicative of worker activity contains X'01' as
the high-order byte of the message type; the lower three bytes of the type field are
the 24-bit connection ID returned by ssWorkerAllocate. Thus the instance can wait
for either client activity or worker activity with a single call to QueueReceiveBlock,
and the arriving message will tell the instance whether it's the client or a worker
that needs attention.

To exchange data with the worker, the instance calls the ssClient APIs just as
usual, using the ss_cli_iam_instance qualifier. Data are moved between the
instance and the worker in the same manner as they are moved between instance
and client. When the instance must send an IPC message to the “worker line
driver” -- for example, to inform the server kernel that it has used ssClientDataPut
to queue data for transmission to the worker -- it forms the instance-to-line-driver
message just as it would for any line driver interaction and then transmits the IPC
message to the queue handle appearing in the worker C-block. The server kernel
receives the message and operates on the worker connection accordingly.

The Worker C-Block

The worker C-block contains a few fields that will be of special interest to the
service instance. These fields are:

e A queue handle that represents the queue to which the instance should
transmit CMS IPC messages relevant to the connection to the worker.

62 z/VM V3R1.0 RSK Programmer's Guide and Reference

* A line driver key that should be used as the key in any such transmitted

messages.

e The vc_userid field of the worker C-block contains the user ID of the worker

virtual machine.

Further, certain fields in the worker C-block are zero because they are irrelevant in

the context of a connection to a worker machine. For example, a worker C-block

does not contain a pointer to an S-block.

Operator Commands

The reusable server kernel supplies a service, WORKER, which lets the server
operator manipulate worker classes. The commands are given in the following

table.

Table 27 (Page 1 of 2). WORKER Commands

Command Description

Page

WORKER ADD Lets the operator add a worker machine to a
worker class, specifying the number of IUCV
connections the worker machine is capable of
handling simultaneously. This command would
usually be found in PROFILE RSK, though the
operator is free to issue it while the server is
running.

209

WORKER CLASSES Displays the existing worker machine classes
and some brief status information about each
class.

210

WORKER DELCLASS Deletes an entire worker class. Normally this
just means that any instances connected to
workers in the class would receive an IPC
message asking them to stop their activity. The
FORCE option will cause the server kernel to
sever the IUCV connections, to inform the
instances that communication to the workers has
been lost, and to CP FORCE any workers running
disconnected. When DELCLASS processing
completes, the worker class is no longer
available for use.

211

WORKER DELETE Operates on a single worker machine in a
manner similar to DELCLASS.

212

WORKER DISTRIBUTE Informs the server kernel that a worker class
should be managed as if its worker machines
are distributed across systems.

213

WORKER MACHINES Displays a table of status information about the
machines in a given class.

214

WORKER RESET Clears any persistent error information the server
kernel may have remembered about worker
machines. This restores the workers to usable
status and is useful after manual intervention
has resolved a problem with a given worker
machine or class of worker machines.

216

Chapter 10. Worker Machines

63

Table 27 (Page 2 of 2). WORKER Commands

Command Description Page

WORKER STATUS Displays a table of status information about each 217
worker connection existing at the moment.

Writing a Worker Machine Program

IBM does not supply a program to run in the worker machine. The server author
must write this program, being aware of the following configuration and execution
considerations:

64

The worker machine's CP directory entry and profiles must be configured so
that the worker machine will start itself completely if autologged. If the worker
machine is running a CMS-based program, IPL CMS PARM AUTOCR is appropriate
in the worker's CP directory entry and the worker's PROFILE EXEC should be
rigged so that the worker program starts automatically. If the worker program is
running under some other operating system, the other operating system's
corresponding mechanisms should be employed.

The server kernel will attempt to IUCY CONNECT to the worker machine, using
RSKWORK as the first eight bytes of the user data area of its connection
parameter list. If the worker program is CMS-based, this means that the
worker program will need to issue HNDIUCV SET to identify an exit named
RSKWORK. When the server kernel attempts to connect, the worker program's
RSKWORK exit routine will be driven. The worker program should respond with
CMSIUCV ACCEPT.

The format and meaning of the data exchanged on the IUCV connection is up
to the server author.

Eventually it will be time to bring down the IUCV connection. The server kernel
will TUCV SEVER if the service instance instructs it that the relationship between
the instance and the worker is to be ended; in this case the worker program
should respond with TUCV SEVER. If the worker machine is the one that decides
when the connection is over, it should issue IUCV SEVER and the server kernel
will respond with its own IUCV SEVER, reflecting the connection loss to the
service instance.

If the main server is configured such that it might route multiple [IUCV
connections to a worker simultaneously, the worker program should be
prepared to handle multiple [IUCV connections simultaneously.

The worker program should not use IUCV SEND,TYPE=2WAY, IUCV QUIESCE, or
IUCV RESUME. The server kernel is not prepared to handle these and will
respond with TUCY SEVER.

Finally, it is interesting to note that the reusable server kernel itself could be used
as the base for a program to be run in the worker machine. The server kernel's
IUCYV line driver is capable of being the recipient of IUCV activity generated by the
server kernel's worker API.

z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 11. Run-Time Environment

To facilitate the writing of well-performing programs and to provide
high-performance interprocedure linkage, the reusable server kernel implements its
own procedure linkage convention. The reusable server kernel entry points
themselves (for example, ssSgpStart) all expect to be driven using this convention,
and routines provided by the server writer (for example, RSKMAIN, service entry
points, thread entry points, and so on) are all driven by the reusable server kernel
using this convention. This convention greatly reduces the need to call a storage
management interface to allocate and release save areas and local variable
storage. This keeps overhead down, letting procedure linkage happen without
excessive SVCs or other calls.®

Associated with each thread is a chain of control blocks known as dynamic storage
area frames or stack frames. Each stack frame is at least 4 KB in size. Contained
in each frame is a frame header and one or more dynamic storage areas (DSAS).
The anchor for this chain of DSA frames is held in a control block called the
run-time anchor block (RAB). An example is shown in Figure 4 on page 66.

23 The linkage resembles the linkage used among internal entry points in the CMS Application Multitasking kernel.

© Copyright IBM Corp. 1999, 2001 65

72

?7?

??

27

12
72
84
88

120

DSA frame

A(next DSA frame)

size (bytes) of this frame

64-byte save area for use by
frame overflow handler

first DSA in frame

next DSA in frame
(etc. for several DSAs)

last DSA in frame

unused space

Dynamic Storage Area (DSA)

unused word

A(previous DSA)

A(next DSA)

60-byte save area for R14..R12

unused area

next available byte in DSA frame

unused area

procedure's automatic
storage

Run—-Time Anchor Block (RAB)

A(first DSA frame)

A(first byte past frame end)

A(frame overflow handler)

Figure 4. Run-Time Environment Control Blocks

The register contents at procedure entry are described in Table 28.

Table 28 (Page 1 of 2). Register Contents at Procedure Entry
Register Description
R1 Pointer to an OS Type | parameter list. The entries in this list are
addresses of the actual parameter values.
R12 Pointer to the RAB, organized as shown above.

66 z/VM V3R1.0 RSK Programmer's Guide and Reference

Table 28 (Page 2 of 2). Register Contents at Procedure Entry
Register Description
R13 Pointer to a DSA, organized as shown above.
R14 Return address.
R15 Called procedure's entry address.

When a procedure is entered, it uses the save area pointed to by R13 in the usual
OS fashion (STM R14,R12,12(R13)). It then computes the size of the DSA it
needs (120 bytes plus amount of automatic storage needed) and compares that to
the amount left in the frame; this comparison is done by adding the amount needed
to the next available byte (NAB) in the caller's save area and comparing that to the
frame end field in the RAB. If there is enough space in the frame, the new DSA is
built starting at the byte pointed to by the NAB field in the current DSA, and this
new DSA is chained to the caller's DSA in the usual OS fashion. If not enough
space is left, then the frame overflow handler is called to add a new frame to the
end of the frame list (the frame overflow handler's address is in the RAB). The
frame overflow handler is cognizant of the registers used during procedure entry
and returns with the registers set such that the linkage processing can continue as
if no overflow had occurred.

When a procedure exits, it unchains its save area, restores the caller's registers
(including the caller's R13, which comes from the previous DSA pointer field in the
exiting procedure's DSA), and returns to the caller through BR R14.

The reusable server kernel provides PL/X and assembler macros implementing
these entry and exit conventions. For PL/X, the macros are invoked through the
OPTIONS clause on the PROCEDURE statement. For assembler, the macros are
invoked directly by the assembler programmer. The assembler programmer must
ensure that the amount of DSA storage he requests is an integral number of
doublewords. An example is shown in Figure 5 on page 68 and Figure 6 on

page 69.

Chapter 11. Run-Time Environment 67

@PROCESS ENVIRONMENT (VM/ESAOS) OPT(MAX);
/* illustration of linkage convention */

sstest: procedure

(
pl_epptr, /* A(eplist) =*/
pl_tpptr, /* A(tplist) =/
pl_scptr /* A(scblock) */
options
(
id /* generates identifier
reentrant /* no static data, please
amode(31) /* AMODE 31
rmode (any) /* can live anywhere
datareg(13) /* R13 Tlocates automatic storage
savearea(120) /* size of fixed part of DSA

stack('SSPRLG','SSEPIL') /* entry and exit macros
)s

/* note BYVALUE because the pointer values we want are =/
/* in the array pointed to by Rl */
declare sstest entry

pointer(31) byvalue,

pointer(31) byvalue,

pointer(31) byvalue

)

external as ('RSKMAIN');
declare

pl_epptr pointer(31), /* pointer to eplist
pl_tpptr pointer(31), /* pointer to tplist
pl_scptr pointer(31); /* pointer to SCBLOCK
respecify (rl2) restricted; /* stay away from RAB pointer
/* body of procedure goes here x/

end sstest;

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

Figure 5. PL/X Linkage

68

z/VM V3R1.0 RSK Programmer's Guide and Reference

**k%

*

* I1lustration of linkage convention
*

k%

*

* Procedure entry:
*

RSKMAIN CSECT , Declare CSECT

RSKMAIN AMODE 31 Establish AMODE

RSKMAIN RMODE ANY Establish RMODE
STM R14,R12,12(R13) Save registers
LR R11,R15 R11 is base register
USING RSKMAIN,R11 Establish addressability
LA RO,DSASIZE RO = size of DSA needed
SSPRLG R1,R2 -> new DSA, RO = new NAB
LR R15,R13 R15 -> caller DSA
LR R13,R2 R13 -> my DSA
ST R15,4(,R13) Write my backward pointer
ST R13,8(,R15) Write caller's forward pointer
LM R15,R2,16(R15) Restore R15-R2

*

* Your code goes in here... stay away from R11-R13. R14

* and R15 can be used as needed for calls to other routines.

*

* Note that your automatic storage area (the storage you

* requested via RO when you called SSPRLG) starts at offset

* X'78' into the save area returned by SSPRLG.

*

*

* Procedure exit (note RC is in R15):

*
L R13,4(,R13) R13 -> caller's DSA
LA RO,DSASIZE Size of DSA I used
SSEPIL Release it
L R14,12(,R13) Get return address
LM RO,R12,20(R13) Restore rest of registers
BR R14 Return to caller

*

* Other stuff
* Note DSASIZE is a multiple of 8 bytes!

DSASIZE EQU 200 200-120 = 80 bytes of Tocal vars
REGEQU Register equates

*
END

Figure 6. Assembler Linkage

Like all other routines, the server entry point RSKMAIN is driven using this linkage
convention. The parameter list array passed to RSKMAIN through R1 is organized as
described in Table 29 on page 70.

Chapter 11. Run-Time Environment 69

Table 29. Parameter List Array for RSKMAIN
Offset Usage

0 Pointer to the extended parameter list with which CMS invoked the
module.

4 Pointer to the tokenized parameter list with which CMS invoked the
module.

8 Pointer to the SCBLOCK for the module, if the module is a nucleus
extension.

The reusable server kernel uses CMS Application Multitasking's support for custom
language run-time environments to implement its convention for procedure linkage.
BKWRTE MODULE is the language environment manager for the reusable server kernel
and needs to be present in the file mode search order when the server module
starts. CMS loads BKWRTE as a nucleus extension prior to giving control to the
server module. BKWRTE must remain loaded as a nucleus extension for the life of
the server program.

70 z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 12. Initialization and Profiles

This chapter describes the flow of control during server execution and describes
how to set up PROFILE RSK. For descriptions of the various command sets, see
Chapter 14, “Command Descriptions” on page 85.

To accomplish most of the work of initializing and configuring the server, the server
author writes a Rexx exec, PROFILE RSK. In this exec the server author supplies
commands necessary to configure the server, start it, and wait for its completion.
The reusable server kernel runs PROFILE RSK as part of server startup.

Most of the work done in PROFILE RSK is accomplished through ADDRESS RSK and
command sets implemented by the reusable server kernel. These command sets
fall into a few broad categories:

e CONFIG commands, meant to set certain configuration parameters needed by
the reusable server kernel during execution.

¢ SGP commands, meant to manipulate storage groups.

e AUTH commands, meant to provide a means for manipulating the authorization
database.

e CACHE commands, meant to provide a means for configuring file caches.
e ENROLL commands, meant to manipulate enroliment data.
e WORKER commands, meant to define pools of worker machines.

¢ Line driver commands, meant to manipulate line drivers and the relationships
between line drivers and services.

Flow of Control

The general flow of control during the execution of the server is illustrated in
Figure 7 on page 73. The execution of the server has these general stages:

Step Description

1 The module begins, and the reusable server kernel performs some
rudimentary initialization.

2 The reusable server kernel passes control to RSKMAIN, the server entry point
provided by the server author.

3 RSKMAIN performs whatever setup is needed, including binding its services
through calls to ssServiceBind.

4 RSKMAIN calls ssServerRun to begin the server.

© Copyright IBM Corp. 1999, 2001 71

Step Description

5 ssServerRun passes control to PROFILE RSK. The processing in PROFILE RSK
proceeds in several stages, as follows:

1. The profile may perform appropriate initialization.

2. The profile issues several CONFIG commands to set configuration
parameters for the reusable server kernel.

3. The profile issues the RUNSERV command to begin the execution of the
server. In response to RUNSERV, the reusable server kernel brings up
line drivers and makes APIs available for use. When RUNSERV returns,
the reusable server kernel is ready for operation.

4. The profile issues any AUTH, CACHE, or other commands necessary to
configure the server.

5. The profile issues one or more line driver START commands to start
services. At this point the server is running.

6. The profile issues the WAITSERV command to wait for the server to end.
7. The profile may perform appropriate termination activities.

8. The profile returns to its caller.

6 ssServerRun returns to RSKMAIN. The return and reason code from
ssServerRun indicate whether the server was able to be started.

7 RSKMAIN performs termination processing.

8 RSKMAIN returns to the reusable server kernel, supplying a return code.

9 The reusable server kernel performs termination and returns to CMS. The
return code supplied to CMS by the server module is the return code of
RSKMAIN.

Execution Conditions within RSKMAIN
RSKMAIN has only two reusable server kernel APIs at its disposal:
e ssServiceBind, to bind services.
e ssServerRun, to start the server and wait for its completion.

No other APIs are permitted. Attempts to call them will produce unpredictable
results.

PROFILE RSK

Shortly after the server module begins execution, PROFILE RSK gets control. This is
just a Rexx exec that performs initialization, configures the server, starts it, waits for
it to end, and then performs termination functions.

For the server author's convenience, any parameters present on the command line
used to invoke the server module are passed to PROFILE RSK such that they can be
retrieved with parse arg.

In general, anything one can do from Rexx is permitted in PROFILE RSK. However,
here are some things to keep in mind:

e Some CONFIG commands are usable only before RUNSERV while others are
usable anytime. For more information, see Table 31 on page 75.

72 z/VM V3R1.0 RSK Programmer's Guide and Reference

CMS
[—> server module
1. init anchor block
2. establish subcom handler
3. establish CONFIG command
4, call RSKMAIN
a. server—wide initialization
b. bind services
c. call ssServerRun
(1) invoke PROFILE RSK
(a) issue CONFIG commands
(b) issue RUNSERV command
((1)) Toad user ID mapping file
((2)) init cradle subsystems
((3)) return to PROFILE RSK
(c) issue AUTH, SGP, CACHE commands
(d) issue line driver START commands
(e) issue WAITSERV command
(2) return to RSKMAIN
d. server-wide termination
e. return to caller
5. remove subcom handler
6. perform cleanup

7. return to CMS

Figure 7. Flow of Control

e All of the rest of the commands sets (for example, AUTH) are usable only
between RUNSERV and WAITSERV, that is, only while the server is running.
Attempts to use these commands at other times produce RC=-3.

For a sample of PROFILE RSK, see Appendix A, “Sample PROFILE RSK” on
page 379.

Chapter 12. Initialization and Profiles 73

Starting and Stopping

Table 30 illustrates the syntax for the RUNSERV and WAITSERV commands. Issue
these from Rexx using ADDRESS RSK.

Table 30. RUNSERV and WAITSERV Commands
Command Usage Syntax Notes
RUNSERV Used within PROFILE . RUNSERV >< Return codes:
RSK to start the 0 Server started
server. OK
X Some other
situation
WAITSERV Used within PROFILE »»—WAITSERV > Return codes:
RSK to wait for the 0 Server
server to stop. terminated
normally
X Some other
situation

Configuration Parameters

The reusable server kernel defines certain configuration parameters so that the
server author or system programmer can control the manner in which the server
behaves. These configuration parameters are manipulated by a command, CONFIG,
which is useful in PROFILE RSK. CONFIG is issued through ADDRESS RSK. Most
CONFIG commands are useful only prior to issuing RUNSERV, but some are useful
anytime.

The parameters and their meanings are given in Table 31 on page 75. For
definitions of the commands used to manipulate these parameters, see Chapter 14,
“Command Descriptions” on page 85.

In truth, CONFIG is a service meant for the manipulation of configuration variables.

This means that a command such as MSG START CONFIG could be used to permit
remote manipulation of configuration variables.

74 z/vM V3R1.0 RSK Programmer's Guide and Reference

"SpUBWILWOD SN 10)

swnAuy | Buiyosyd uonezuoyine wiopad [IM 30IAISS ¢HS BU) Jaylaym s18S d9S NJIHIHLNY
‘SpuewWOI S) Joj Bupjoays
swnAuy uonezuoyine wioyad [|Im d1AIBS YIAYIS BY JaYlaym SIS YINYIS NIIHOHLNY
‘Spuewwod si Joj Bupjoayo
swnhuy uopezuoyine wiopad [IM 321AIBS YOLINOW dU} Jayidaym s1es YOLINOW MJIHIHLNY
"SPUBWIWOD d01S 10 1YVLS
‘awnAuy 1o} Bupjoayd uonezuoyne wiopad |IM SIBALIP aul| Jaylaym S1as a7 MJIHIHLNY
‘SpuBWWOI S1 o} Bupjoayo
swnhuy uonezuoyine wioyad M 821AI8S TT0UNT Byl JaYlBym S18S TI04NI MIIHOHLNY
‘SpueWwWwo? Sl Io}
‘awnAuy Bupjoayd uoneziuoyine wiopad [jIM 2IAIBS d) 9yl Jaylaym S1as dd NIIFHIHLNY
‘SpuBwWWOI S1 Joj Bupjoayo
swnAuy uonezuoyine wioyad [|im d21AI8S HTANOD Y JaYlaym s18s HIANOD MIIHIHLNY
‘Spuewwod sl 1o}
swpAuy | Buposyd uopezuoyine wiopad [IM 3DIAIBS SWD B Jayiaym s18s SWI ™ XIFHIHLNY
‘Spuewwod si Joj Bupjosyo
‘dwnAuy uonezioyine wliopad |Im 831AI8S JHIYD Yl Jayiaym S18s JHOYD NIIHOHLNY
‘SpuBewWWOoI S1 o} Bupjoayo
swnhuy uonezuoyine wiopad ||Im 32IAISS HINY BY} Jaylaym s1es HLNY NJIHOHLNY
"S4S SI NOILYJ0T LNY usym paioub) AYISNNY-21d "3|ufo| uorezuoyne ay) Jo sweu auy s18S 907" LNy
AY4ISNNY-81d "ejep uonezuoyine ay) Joj Alousodal sy s18S NOILYJ0T LNy
"S4S SI NOILYJ0T LNY usym paioub) AY4ISNNY-8.d "3|iy xapul uonezuoyine ay) jo g Adod Jo swreu ay) s1es Z X3aNI LNy
AYISNNY-81d "3|i} xapul uonezuoyine ay jo T Adod jo awreu ay) s1es T X3ANI™ 1Ny
"1S1| Jayng Mol
“19bajul annisod e se smol AjIoads ‘awnAuy 93J) 8yl uo dasy 01 siayng MoJ JO Jaquinu wnwixew ay) S1as 3344”10V
"S4S SI NOILYJ0T LNY usym paioubj AYISNNY-81d "8|)} BIEp UONBZLOYINE 8y} JO Z AdD JO Bweu ay) s18S 2 V1va 10y
AYISNNY-81d "8|l} elep uonezuoyine sy jo T Adod Jo sweu ay) s18S T vlva 1ny
196ajul annisod e se smold Aj1oads ‘awnAuy "ayoed 0] Blep uoleziioyine Jo SMOJ JO Jaquinu ayl s19S IHIYD LNV
S910N SUBYM uoloun4 a|gelren

sa|qeleA uoneinbiyuo) -

(¢ Jo T abed) TE 8|0elL

75

Initialization and Profiles

Chapter 12.

"asn p|noys

.wE_H>:< J19ALP T700dS @yl aulydew SOSY 9yl JOo | 18sn ayl s1esS n:w_m_mzlmumw_
‘3ouelSul ue 01 | J8sn

swnhuy a|qeddewun ue ssed ||Im JBALP BUIl TOOdS 8y} Jaylaym s1as 700dS” dYWON
‘@ouelsul ue 01 d|

‘dwnAuy Jasn ajqeddewun ue ssed ||Im JI9ALIP aull AN 3y JIayldaym S1as dan” dywoN
‘@oue]sul ue 01 |

‘awnAuy Jasn ajqeddewun ue ssed ||IM JSALIP aull D1 dY) JIayidaym s1as dJL dYWON
‘goueIsuUl ue 0} | Jasn a|qeddewun

awnhuy ue ssed |[Im J8ALP BUll DSINS/OSIN 8Ul JBYIsym s18S HSW dYWON
‘@oue]sul ue 01 |

‘awnAuy Jasn a|qeddewun ue ssed ||IMm JOALIP aul] ADNI Y1 Jaylaym S18S ANI dYWON
‘@due]sul ue 0] | Jesn

‘awnAuy a|qeddewun ue ssed ||Im JaALIP aull DddY 9yl Jayiaym s1as 2ddY dYWON
'saljdal anss| 01 puewWwOod

swnAuy HON9SW S.dD 8SN ||IM JBALP 8Ull DSINS/OSIN 8U} Jaylaym s18s YAHON 9SW

NJ3ISNNY-31d

"UIRIUOD ||IM JB1NQ JONUOW [3UISY Syl SMOJ JO Jaquinu ay) S18S

SMOY ™ TINYIN NOW

*199J404Y2uyss Agq pauinial si Jayng
Joyuow uoiesijdde ay) Jo ssaippe ayl

N43ISNNY-3ld

“1ajing Jonuow uoneondde ay) Jo azis ay) S18S

3ZIS ¥3ISN NOW

A43ISNNY-3ld

I8jjng Jonuow v1valddv
sJanas au Ajnuapl 01,2000, X DVIA SSHOAUI 3 USYM aSN [|im
[2uIaY JBAIaS 3|gesnal ay} Jayiuapl onpoid 81Ag-9T oY1 S19S

@I 1INaoyd NOW

‘loodgns auo Aue
1o} Jebeuew abelols |aulay JaAlas ajgesnal ayl Aq paredojeald

"19bajul annisod e se sabed Ajoads ‘awnAuy 1day aq pjnoys reyl sabed Jo Jaquinu wnuwixew ayl s19S JTYAXYW WIW
‘'SpuBLIWOD S) 10} Buioayd

"awnAuy uonezuoyine wiopad |[IM S0IAIS YINYOM BY) JBYIBYM S1I8S YINIOM MITHIHLNY
‘SpuBWWOI S1 Joj Bupjoayd

"awnAuy uonezuoyine wioyad |[IM S0IAISS ATYISN BYI JBYIBYM SI8S aI¥3SN NIIHIHLNY
‘'SpuBLIWOD S) 10} Bujoayd

"awnAuy uonezuoyine wiopad [|IM S2IAI8S ITYL dY} Jaylaym s1es ITYL NITHIHLNY

S910N SUBUM uonoun4 a|gelen

sa|geleA uoreinbyuo) (€ jo ¢ ebed) TE 8|qeL

z/VM V3R1.0 RSK Programmer's Guide and Reference

76

‘uonnoaxa 1oy SND 01 1ndul

‘awnAuy paziubodaiun ssed [jIm JBALIP BUll TOOdS 8yl Jay1aym s19s 700dS” WA
"uonNJaXa 10} SIND 01 sabessawl

awnAuy paziuBooaiun ssed |Im JsAUP Uil WODENS Ul JaYIsyM S18S W0I9NS WA
"uolINJaXa 10} SIND 01 sabessawl

swnhuy pazjuBooalun ssed [|IM JaALP Ul DSINS/OSIN dU} JaUYIBYM SI8S 9SW WA
"uonNJaXa 10} SIND 01 Saul| pueWWOod

‘dwinAuy paziubooaiun ssed ||IMm JISALIP dUl| 9]JOSUOD dY) JIaYldayMm S19S 3T0SN0D WA

swnAuy ‘8| buiddew Q| Jasn ay) Jo sweu ay) s19S 3714 dvin
‘Alsnoaueynwis unJ 01 1dwane |IM JaAlp aull Buiziajrered

‘awnAuy © 9JIAISS B JO Spealy} JO Jagquinu wnwixew ay} s1as SAVIYHL AYS
‘1ndino ad1AIas 01 asuodsal ul alelauab

“awnAuy M J9ALIP Bull 1TOOdS aui saly yound jo adAy ajiy au s1as 1471nd1N0 1dS
‘Indul 92IAI8S se aziubodal

swnhuy (1M J9ALP BUll TOOdS 8y} sajly Japeal jo adAl ajy ays s18S 147 LNdNT 1dS
'9p0o23p 01 8|geun si i sa|l [00ds YIASNYHL

dwnAuy dO [I'M J8AUp Bull TO0dS 8yl yalym 01 dj 48sn ay1 s1es ¥IHILYD 1dS

A4ISNNY-8.d 8|l uoniuysp dnolb abelols 8y} Jo sweu ay) S19S 3114 d9S

S910N SUBUM uonoun4 a|gelen

sa|geleA uoreinbyuo) (€ jo ¢ ebed) TE 8|qeL

77

Initialization and Profiles

Chapter 12.

Storage Group Definition File

The storage groups known to the reusable server kernel are recorded in the file
whose name is given in configuration variable SGP_FILE. Each time an API call that
changes the storage group configuration executes successfully, the reusable server
kernel rewrites the file. Thus storage group definitions persist across invocations of
the server program.

This file is not meant for manual manipulation. It should be manipulated only with
the appropriate API calls or administration commands.

This file must be present when the reusable server kernel starts. If it is not
present, the reusable server kernel will not start. To create the first-ever
configuration file, just use XEDIT to make a one-record, V-format file whose only
record contains an asterisk as its first character. The reusable server kernel will
ignore this record and realize that no storage groups are defined.

User ID Mapping Facility

Frequently the reusable server kernel translates (nodeid,userid) pairs to
single-token user IDs. This mapping is part of the scheme by which the reusable
server kernel presents single-token user IDs to service instances. For example, the
spool file line driver translates the origin node and origin user ID of a request file
into a single-token user ID and passes that single-token user ID to a service
instance. Similarly, the TCP/IP line driver translates the client's IP address into a
single-token user ID.?* Both these translations are done through a translation
database called the user ID mapping file. The user ID mapping data is kept in a
file whose name is given in configuration variable UMAP_FILE.

The reusable server kernel loads the mapping file into storage when the server
starts and uses the in-storage copy for translations. The command USERID RELOAD
is available for reloading the in-storage copy from disk. This lets the server
operator change the mapping while the server is running.

Each time the reusable server kernel needs to translate a (userid,nodeid) pair to a
single-token user ID, the translation is done according to the rules in the mapping
file. The translation scan goes from top to bottom through the file, stopping at the
first matching entry. The entries can contain wildcards to ease the handling of
groups of users (nodes, and so forth). The rules for wildcard use are the same as
the rules for wildcards in CMS Application Multitasking's IPC message keys and
event keys.

The syntax rules for the user ID mapping file are illustrated in Appendix B, “Sample
User ID Mapping File” on page 383 contains a sample user ID mapping file.

The mapping file must be present when the server starts; the server will not start
without it.

24 For TCP/IP, nodeid is the IP address, and userid is *.

78

z/VM V3R1.0 RSK Programmer's Guide and Reference

Chapter 13. Monitor Data

While the server runs, the reusable server kernel uses CP's APPLDATA facility
(Diagnose X'00DC') to accrue monitor data. The monitor data support is arranged
so that both the reusable server kernel itself and the server application can
generate monitor data concurrently.

The monitor data facility works like this:

* As part of setting up the server virtual machine's CP directory entry, the system
administrator must insert OPTION APPLMON so that the server virtual machine will
be permitted to produce monitor data.

e In PROFILE RSK prior to the RUNSERV command, the server author places CONFIG
commands to set the values of the MON_PRODUCT_ID, MON_KERNEL_ROWS, and
MON_USER_SIZE configuration variables. These variables control the following
things:

— The value of MON_PRODUCT_ID is the product ID the reusable server kernel
uses when it invokes Diagnose X'00DC' to identify the monitor buffer.

— The value of MON_KERNEL_ROWS is the number of monitor rows the server
kernel should allocate for its own purposes. The minimum and default
value is 36 rows.

— The value of MON_USER_SIZE is the amount of space the reusable server
kernel reserves in the monitor buffer for data the server application will
generate. The default value for this is 256 bytes.

e Just after RUNSERV, the server kernel allocates the monitor buffer according to
the configuration parameters specified and invokes Diagnose X'00DC' to
identify the monitor buffer. The server administrator should note that CP
requires the monitor buffer not to exceed 4024 bytes in size. If an error occurs
in trying to identify the monitor buffer, the server kernel will write a message to
the server console, specifying the Diagnose X'00DC' return code produced by
CP. The server administrator will need to interpret the return code and take
appropriate action.

¢ While the server runs, the server kernel employs rows of the monitor buffer to
log information pertinent to the use of various resources (memory subpools, for
example). Monitor data is produced for a resource for only as long as the
resource exists; when the resource is deleted, the monitor row is marked free
and might be reused later for some other resource.

 |If the server application wants to produce its own monitor data, it can call entry
point ssAnchorGet to retrieve the address and length of the portion of the
monitor buffer reserved for application use.

* The application can store information into the application portion of the monitor
buffer, and the values stored in the buffer will be picked up by CP as
APPLDATA.

* As part of server shutdown, the server kernel invokes Diagnose X'00DC'
again to retract the monitor buffer.

© Copyright IBM Corp. 1999, 2001 79

Monitor Buffer Organization

The first part of the monitor buffer is reserved for use by the server kernel. This
reserved portion is organized into records called monitor rows. The first eight bytes
of each row tell the kind of data accruing in that row, according to Table 32.

Table 32. Monitor Data Rows

Identifier Type of Row

KERNEL Kernel information
SERVICE Service information
LINEDRV Line driver information
AUTH Authorization information
SGP Storage group information
MEM Memory information
ENROLL Enroliment information
CACHE File cache row

TRIE Trie APl row

WORKER Worker API row

$UNUSED Unused row

After the area used by the server kernel comes the application portion of the
monitor buffer. The application can use ssAnchorGet to retrieve the address and
length of this area.

The sections below describe the organizations of the server kernel's monitor buffer
rows.

Kernel Row

The kernel row gives basic information about the organization of the monitor area.
There is only one kernel row and it is always the first row of the monitor buffer.

Table 33. KERNEL Monitor Row
Offset Length Data Type Usage
0 8 CHAR String “KERNEL”
8 8 CHAR Blanks (X'40')
16 4 INT Number of rows
20 4 INT Size of row (bytes)
24 4 INT Size of application portion
28 4 INT Reserved for IBM

80 z/vM V3R1.0 RSK Programmer's Guide and Reference

Service Row

A service row accumulates information about the operation of a specific service.

Table 34. SERVICE Monitor Row
Offset Length Data Type Usage
0 8 CHAR String “SERVICE”
8 8 CHAR Service name
16 4 INT Reserved for IBM
20 4 INT Number of completed transactions
24 8 INT Total bytes from clients
32 8 INT Total bytes to clients

Line Driver Row

A line driver row accumulates information about the operation of a specific line

driver.

Table 35. LINEDRV Monitor Row

Offset Length Data Type Usage
0 8 CHAR String “LINEDRV”
8 8 CHAR Service nhame
16 4 INT Reserved for IBM
20 4 INT Number of completed transactions
24 8 INT Total bytes from clients
32 8 INT Total bytes to clients

Authorization Row

The authorization row accumulates information about the operation of the
authorization API.

Table 36. AUTH Monitor Row

Offset Length Data Type Usage

0 8 CHAR String “AUTH”

8 8 CHAR Unused

16 4 INT Number of permits

20 4 INT Number of inquiries

24 4 INT Number of rows retrieved
28 4 INT Number of row cache hits

Chapter 13. Monitor Data

81

Storage Group Row

A storage group row accumulates information about the operation of a particular

storage group.

Note that times are accrued only when I/O is performed through DIAG X'00A4'.

Table 37. SGP Monitor Row
Offset Length Data Type Usage
0 8 CHAR String “SGP”
8 8 CHAR Storage group name
16 4 INT Reserved for IBM
20 4 INT 1/0 technique:
0 Diag X'A4'
1 Diag X'0250'
2 VM Data Spaces
24 4 INT Number of reads
28 8 INT Pages read
36 8 INT Time spent reading (STCK)
44 4 INT Number of writes
48 8 INT Pages written
56 8 INT Time spent writing (STCK)

Memory Row

82

A memory row accumulates information about the operation of a particular subpool.

Table 38. MEM Monitor Row
Offset Length Data Type Usage
0 8 CHAR String “MEM”
8 8 CHAR Subpool name
16 4 INT Free storage in server kernel cache
20 4 INT Amount currently in use through ssMemoryAllocate
24 4 INT Calls to ssMemoryAllocate
28 8 INT Total taken through ssMemoryAllocate
36 4 INT Calls to ssMemoryRelease
40 8 INT Total returned through ssMemoryRelease
48 4 INT Times extended through CMSSTOR
52 8 INT Total taken through CMSSTOR
60 4 INT Times depleted through CMSSTOR
64 8 INT Total returned through CMSSTOR

z/VM V3R1.0 RSK Programmer's Guide and Reference

Enrollment Row

An enrollment row accumulates information about the operation of a particular

enrollment set.

Table 39. ENROLL Monitor Row

Offset Length Data Type Usage

0 8 CHAR String “ENROLL”

8 8 CHAR Enrollment set name

16 4 INT Number of records in set

20 4 INT Bytes in use holding records
24 4 INT Count of insertions

28 4 INT Count of removals

32 4 INT Count of retrievals

Cache Row
The cache row accumulates information about the operation of the file caching API.
Table 40. CACHE Monitor Row
Offset Length Data Type Usage
0 8 CHAR String “CACHE”
8 8 CHAR Cache name
16 4 INT Cache size in bytes
20 4 INT Bytes in use
24 4 INT Files in cache
28 4 INT Number of opens
32 4 INT Number of hits
36 4 INT Number of discards
Trie Row

The trie row accumulates information about the operation of the trie API.

Table 41 (Page 1 of 2). TRIE Monitor Row

Offset Length Data Type Usage

0 8 CHAR String “TRIE”

8 8 CHAR Trie name

16 4 INT Last free trie byte

20 4 INT Next free trie byte

24 4 INT Records indexed

28 4 INT Internal node count

32 4 INT Number of lookups done

Chapter 13. Monitor Data

83

Table 41 (Page 2 of 2). TRIE Monitor Row

Offset Length Data Type Usage

36 4 INT Number of records returned

A trie's monitor data is maintained only in the virtual machine that owns the trie and
is updated only when the owning virtual machine performs an operation against the
trie.

Worker Row

The worker row accumulates information about the operation of the worker machine
API.

The worker row is updated every 30 seconds as long as there is activity through
the worker API (if no calls to the worker API happen, the row does not get
updated). The worker row contains information about the three most active worker
classes, as measured by total number of worker connections since the server
started. The information in the worker row can be trusted if the STCK field of the
row is nonzero. While the row is being recomputed, the STCK field is set to zero.
There is no guarantee that the classes will be mentioned in the row in order of their
activity - the most active class might appear in the "class 3" slot, for example.

Table 42. WORKER Monitor Row

Offset Length Data Type Usage

0 8 CHAR String “WORKER”

8 8 CHAR Unused

16 8 DWORD STCK of last monitor row update
24 8 CHAR Class name 1

32 4 INT Total connections to class 1

36 4 INT Connections right now to class 1
40 8 CHAR Class name 2

48 4 INT Total connections to class 2

52 4 INT Connections right now to class 2
56 8 CHAR Class name 3

64 4 INT Total connections to class 3

68 4 INT Connections right now to class 3

84 z/vM V3R1.0 RSK Programmer's Guide and Reference

Chapter 14. Command Descriptions

This chapter describes commands made available by the set of services shipped as
part of the reusable server kernel:

Table 43. Programming Interfaces

Subset Description

APPC Provides a means of controlling the APPC/VM line driver.
AUTH Provides a means of manipulating the authorization database.
CACHE Provides a means of manipulating file caches.

CMS Provides a means of issuing CMS commands.

CONFIG Provides a means of manipulating configuration parameters.
CONSOLE Provides a means of manipulating the console line driver.
CP Provides a means of issuing CP commands.

ENROLL Provides a means of manipulating enroliment data.

Ilucv Provides a means of manipulating the IUCV line driver.
MONITOR Provides a means of displaying monitor rows.

MSG Provides a means of manipulating the MSG/SMSG line driver.
SERVER Provides a means of controlling the execution of the server.
SGP Provides a means of manipulating storage groups.

SPOOL Provides a means of manipulating the SPOOL line driver.
SUBCOM Provides a means of manipulating the SUBCOM line driver.
TCP Provides a means of manipulating the TCP/IP line driver.
TRIE Provides a means of manipulating tries.

UDP Provides a means of manipulating the UDP/IP line driver.
USERID Provides a means of manipulating the user ID mapping file.
WORKER Provides a means of manipulating worker machine pools.

In truth, each of these command sets is implemented as a reusable server kernel
service of the same name. Said services all expect record-oriented input and they
all produce record-oriented output. This means that they can be sourced by any of
the reusable server kernel's record-oriented line drivers. In addition, these services
can be sourced by the bulk data line drivers if the client program takes
responsibility for managing the data stream in record-oriented fashion (see Table 8
on page 15).

To set up the particular sourcing arrangement you want, use PROFILE RSK. For an
example of a PROFILE RSK that establishes several sourcing arrangements for each
of these services, see Appendix A, “Sample PROFILE RSK” on page 379.

In addition to the specific messages listed in the command descriptions that follow,
any of these commands might produce any of these messages:

BKWO0O0O0OI Operation completed OK.
BKWOOO1E Not authorized.

© Copyright IBM Corp. 1999, 2001 85

BKWOOO2E Enter a command.
BKWOOO3E Syntax error.
BKWOOO4E Unrecognized command.

For more information about messages, see Appendix H, “Messages” on page 411.

86 z/VM V3R1.0 RSK Programmer's Guide and Reference

APPC LIST

APPC LIST

»»—APPC—LIST

\
A

Purpose

Operands

Options

Usage Note

Lists the subtasks associated with the APPC/VM line driver.

None

None

The output form is:

Subtask ServName T ExitName Capacity InUse Threads Waiters

0 ECHO G BKWGOO0O 40 0 1 0

The columns have the following meanings:

Subtask The numeric identifier of the subtask.
ServName The name of the service involved.
T The type of APPC/VM resource, as follows:
G APPC/VM global resource
L APPC/VM local resource
P APPC/VM private resource
ExitName The name of the CMSIUCV exit the server kernel opened. Also
known as the transaction program name.
Capacity The number of concurrent clients the subtask can handle.
InUse The number of clients currently being handled.
Threads The number of CMS threads working on behalf of this subtask.
Waiters The number of clients whose conversations are waiting to be

accepted (unhandled connection pending interrupts).

Messages and Return Codes

BKWO0201E Subtask not found.

Chapter 14. Command Descriptions 87

APPC QUERY

APPC QUERY

»»—APPC—QUERY—subtaskid

\
A

Purpose
Queries a specific APPC/VM subtask.
Operands
subtaskid
The identifier of the subtask to query.
Options
None
Usage Note
The output form is:
Instance C-Block Userid IPVMID LUName BytesIn BytesOut
1 01AFD1B8 BKW WADEB *USERID:WADEB 0 0

The columns have the following meanings:

Instance The numeric identifier of the instance.

C-Block The address of the instance's C-block.

Userid The mapped user ID of the client.

IPVMID The security user ID of the client.

LUName The name of the LU at which the client resides.
ByteslIn The number of bytes the client has sent the instance.

BytesOut

The number of bytes the instance has sent the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

88 z/vM V3R1.0 RSK Programmer's Guide and Reference

APPC REPORT

APPC REPORT

\
A

»»—APPC—REPORT N
o]
FF

Pu rpose
Toggles reporting state for the APPC line driver.
Operands
ON
Turns reporting on.
OFF
Turns reporting off.
Options
None
Usage Note

When reporting is on, the APPC line driver issues the following messages to
describe client activity:

BKW1704lI
BKW1705I
BKW1706I
BKW1707I

For more information, see “APPC Line Driver Messages” on page 434.

Messages and Return Codes
None

Chapter 14. Command Descriptions 89

APPC START

APPC START

—GLOBAL—srv_threads—servicename

GLOBAL
LOCAL— |—nmxcl ien ts~L—4|—1
PRIVATE— t

pn

»»—APPC—START—servicename

\ 4
A

Purpose
Starts a service, connecting it to the APPC/VM line driver.
Operands
servicename
The name of the service to start, as specified on a call to ssServiceBind.
GLOBAL
The transaction program should be registered as an APPC/VM global resource.
LOCAL
The transaction program should be registered as an APPC/VM local resource.
PRIVATE
The transaction program should be registered as an APPC/VM private
resource.
maxclients
The maximum number of clients this subtask should be permitted to serve
concurrently.
tpn
The transaction program name the APPC/VM line driver should use.
Options

GLOBAL
The transaction program should be registered as an APPC/VM global resource.

srv_threads
The current value of configuration parameter SRV_THREADS.

servicename
The name of the service being started.

Usage Notes

1. To register a global or local resource, the server virtual machine's CP directory
entry must be appropriately configured.

2. To register a private resource, $SERVER$ NAMES must be set up correctly.

3. The started service is identified by a number called the subtask ID. Use this
identifier to refer to the started service in future commands.

90 z/VM V3R1.0 RSK Programmer's Guide and Reference

APPC START

For more information, see VM/ESA: Connectivity Planning, Administration, and
Operation.

Messages and Return Codes

BKWOOO5E Out of storage.

BKWO0200E Service not found.

BKWO0205E Prefix already in use.

BKWO0206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

BKW1607E Client count must be greater than zero.

BKW1608E Unable to HNDIUCV SET.

BKW1609E Unable to create controlling thread.

BKW1700E (Resource &1) CMSIUCV CONNECT to *IDENT RC=&2
BKW1702E Unable to identify APPC/VM resource.

Chapter 14. Command Descriptions 91

APPC STOP

APPC STOP

\
A

»»—APPC—STOP—subtaskid L_ _J
NOW

Pu rpose
Stops a specific APPC/VM subtask, optionally denying currently-connected clients
the privilege of completing their operations.
Operands
subtaskid
The identifier of the subtask to stop.
Options

NOW
Stop the subtask without letting current clients complete normally.

Usage Notes
None

Messages and Return Codes

BKWO0201E Subtask not found.
BKW1600I Instance STOP requested.
BKW1606E Wait expired for STOP.

92 z/VM V3R1.0 RSK Programmer's Guide and Reference

AUTH CRECLASS

AUTH CRECLASS

»»—AUTH—CRECLASS—c! ass—Eoper'at ion

\ 4
A

Pu rpose
Creates an object class in the authorization database.
Operands
class
The name of the class to be created.
operation
The name of an operation to be defined on objects of this class.
Options
None
Usage Note

For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes
BKWOOO5E Out of storage.
BKWOOO7E RC=&1 RE=&2 from routine &3
BKWOB800E The class specified already exists
BKWO0801E Unable to read the authorization files
BKWO0802E Unable to write to the authorization files

Chapter 14. Command Descriptions 93

AUTH CREOBJECT

AUTH CREOBJECT

»»—AUTH—CREOBJECT—object—class

\
A

Pu rpose
Creates an object class in the authorization database.
Operands
object
The name of the object to be created.
class
The name of the class to which the object is to belong.
Options
None
Usage Note

For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

BKWOOO5E Out of storage.

BKWO0O0O7E RC=&1 RE=&2 from routine &3
BKWOB800E The class specified already exists
BKWO0801E Unable to read the authorization files
BKWO0802E Unable to write to the authorization files
BKWOB05E The class specified does not exist
BKWOB806E The object specified already exists

94 z/vM V3R1.0 RSK Programmer's Guide and Reference

AUTH DELCLASS

AUTH DELCLASS

\
A

»»—AUTH—DELCLASS—class |_ |

|—OBJ ECTSON LYJ

Purpose
Deletes the objects of a given class.
Operands
class
The class for which objects are to be deleted.
Options
OBJECTSONLY
Delete the objects for the class, but leave the class itself in the authorization
database.

Usage Notes

1. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

2. If OBJECTSONLY is omitted, then the class itself is also deleted from the
authorization database.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

BKWO0801E Unable to read the authorization files

BKWO0802E Unable to write to the authorization files

BKWOB05E The class specified does not exist

BKWOS807E At least one of the options specified is unrecognized

Chapter 14. Command Descriptions 95

AUTH DELOBJECT

AUTH DELOBJECT

»»—AUTH—DELOBJECT—object B

\
A

l—RU LESON LYJ

Purpose

Operands

Options

Usage Notes

Deletes the authorization rules for a given object.

object
The object for which rules are to be deleted.

RULESONLY

Delete the rules for the object, but leave the object itself in the authorization
database.

1. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

2. If RULESONLY is omitted, then the object itself is also deleted from the
authorization database.

Messages and Return Codes

BKWO0O0O7E RC=&1 RE=&2 from routine &3

BKWO0801E Unable to read the authorization files

BKWO0B802E Unable to write to the authorization files

BKWOB07E At least one of the options specified is unrecognized
BKWOS808E The object specified does not exist

96 z/VM V3R1.0 RSK Programmer's Guide and Reference

AUTH DELUSER

AUTH DELUSER

\
A

»»—AUTH—DELUSER—userid
L]
class

Pu rpose
Deletes authorization rules for a user.
Operands
userid
The user ID for which authorization rules are to be deleted.
class
The class from which userid's rules are to be deleted.
Options

None

Usage Notes

1. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

2. If class is not specified, then userid's rules for all classes are deleted.

Messages and Return Codes

BKWO0O0OO7E RC=&1 RE=&2 from routine &3

BKWO0B801E Unable to read the authorization files

BKWO0B802E Unable to write to the authorization files

BKWOS8O07E At least one of the options specified is unrecognized
BKWO810E No rules exist for the userid specified

Chapter 14. Command Descriptions 97

AUTH LISTCLASS

AUTH LISTCLASS

|—*
»»>—AUTH—LISTCLASS
|—match_key—

\ 4
A

Purpose
Lists the classes defined in the authorization data.
Operands
match_key
The key a class ID must match in order for it to show up in the output.
Options

None

Usage Notes

1. match_key is expressed using the CMS Application Multitasking syntax for IPC
and event keys.

2. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

3. Output from this command appears as follows:

For class: File
R W

For class: Dir
R W NR NW

For class: Service
STRT STOP EXEC

The output just cites each class and then follows the citation with a list of the
operations defined on it.

Messages and Return Codes

BKWO0O00O7E RC=&1 RE=&2 from routine &3

BKWO0801E Unable to read the authorization files

BKWO0802E Unable to write to the authorization files

BKWOB05E The class specified does not exist

BKWOB07E At least one of the options specified is unrecognized
BKWO0813E No classes exist for the match key specified

98 z/vM V3R1.0 RSK Programmer's Guide and Reference

AUTH LISTOBJECT

AUTH LISTOBJECT

*
»»—AUTH—LISTOBJECT—class_id [

\ 4
A

Lﬂwatch_key——

Purpose

Operands

Options

Usage Notes

Lists the objects belonging to a specified class.

match_key

The key an object name must match in order for it to show up in the output.

None

1. Operand match_key is expressed using the CMS Application Multitasking

syntax for IPC and event keys.

. For more information on the naming conventions and other limits for the

authorization API, see “Naming Conventions and Other Limits” on page 42.

. Output from this command appears as follows:

For class: Service
ECHO
SGEXER
HTTP
AUTH
CACHE
CONFIG
ENROLL
MONITOR
SERVER
SGP
USERID
cp

CMS

The name of the class appears, followed by a list of the names of the objects in
the class.

Chapter 14. Command Descriptions 99

AUTH LISTOBJECT

Messages and Return Codes

BKWO0O0O7E RC=&1 RE=&2 from routine &3

BKWO0801E Unable to read the authorization files

BKWO0802E Unable to write to the authorization files

BKWOB05E The class specified does not exist

BKWOS807E At least one of the options specified is unrecognized
BKWO0814E No objects exist for the match key specified

100 z/vM V3R1.0 RSK Programmer's Guide and Reference

AUTH MODCLASS

AUTH MODCLASS

»»—AUTH—MODCLASS—c! ass—Eoper'at ion

\ 4
A

Pu rpose
Adds operations to the definition of an existing object.
Operands
class
The name of the class to be modified.
operation
The name of an operation to be defined on objects of this class.
Options
None
Usage Note

For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes
BKWOOO5E Out of storage.
BKWO000O7E RC=&1 RE=&2 from routine &3
BKWO0S801E Unable to read the authorization files
BKWO0802E Unable to write to the authorization files
BKWOB05E The class specified does not exist
BKWO0812E Operation limit for the class specified has been exceeded

Chapter 14. Command Descriptions 101

AUTH PERMIT

AUTH PERMIT

] [T
»»—AUTH—PERMIT—userid—object operation

\ 4
A

ADD—

LT
REMOVE—
REPLACE-

Purpose

Operands

Options

Usage Note

Controls the operations a user can perform on an object.

userid
The user ID to which this rule is to apply.

object
The object to which this rule is to apply.

operation
An operation defined on this object.

ADD
This rule is to be added to userid's permissions for object.

REMOVE
This rule is to be removed from userid's permissions for object.

REPLACE
This rule is to replace userid's permissions for object.

For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

BKWOOO5E Out of storage.

BKWO0O0OO7E RC=&1 RE=&2 from routine &3
BKWO0801E Unable to read the authorization files
BKWO0802E Unable to write to the authorization files
BKWOS808E The object specified does not exist

102 z/vM V3R1.0 RSK Programmer's Guide and Reference

AUTH QOBJECT

AUTH QOBJECT

»»—AUTH—QOBJECT—object n 2
userid

\
A

Purpose

Operands

Options

Usage Notes

Inquires about the permitted operations associated with a given object.

object
The object for which rules are to be displayed.

userid
The user ID for which rules are to be displayed.

None

1. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

2. If userid is supplied, then only userid's rules for object are displayed.
3. If userid is omitted, then all rules for object are displayed.
4. Output from this command is as follows:

For object: SGP
For userid: RANDOPM
STRT STOP

For userid: BKW
STRT STOP EXEC

The output identifies the user IDs for whom there are rules in the data and for
each such user ID the output lists the permitted operations.

Messages and Return Codes

BKWOOO5E Out of storage.

BKWOOO7E RC=&1 RE=&2 from routine &3
BKWO0B8O01E Unable to read the authorization files
BKWO803E Too many operations or options specified
BKWOS808E The object specified does not exist
BKWO815E No userids exist for the object specified
BKWOB816E No rules exist for the userid specified

Chapter 14. Command Descriptions 103

AUTH RELOAD

AUTH RELOAD

»—AUTH—RELOAD

\
A

Pu rpose
Causes the authorization API to reset its attempts to use the authorization
database.
Operands
None
Options
None
Usage Note

For support information, see “ssAuthReload — Reload Authorization Data” on
page 248.

Messages and Return Codes
BKWO0O0OO7E RC=&1 RE=&2 from routine &3
BKWO0801E Unable to read the authorization files
BKWO0802E Unable to write to the authorization files
BKWO0811E Unable to open the authorization files

104 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKWENRCP

BKWENRCP

»»—BKWENRCP—fn L
ft

BKWENRDB—=
r

\4
A

-*.

fm
—dirid—

Purpose

Operands

Options

Usage Notes

Removes redundant information from the SFS file holding an enroliment set.

set_name

fn
ft

fm

The name of the set to be interrogated.
The file name of the SFS enroliment file.
The file type of the SFS enroliment file.

The file mode of the SFS enrollment file.

dirid

The directory name of the SFS enrollment file.

None

. BKWENRCP is an EXEC, not an internal command provided by the reusable

server kernel (such as the ENROLL command set).

. To be processed by BKWENRCP, the SFS file containing the enrollment set

must not be active -- that is, the corresponding enroliment set must be dropped
through ENROLL DROP before BKWENRCP can work.

. The output is written to the A file mode in a file whose file name matches fn

and whose file type is BKWENRCP.

. If your enrollment set is very large, a large virtual machine might be required to

process it.

Messages and Return Codes
The return codes produced by BKWENRCP all come from CMS Pipelines. For
more information, see z/VM: CMS Pipelines Reference.

Chapter 14. Command Descriptions 105

CACHE CREATE

CACHE CREATE

\
A

»»—CACHE—CREATE—cname
|_ ' J
size

Pu rpose
Creates a file cache.
Operands
chame
The name of the file cache to be created.
size
The size of the file cache, in pages.
Options

None

Usage Notes

1. The name cname is used directly in a call to ssMemoryCreateDS and therefore
must be unique among all storage subpool names.

2. The cache size size is given in pages. It must be greater than zero and less
than or equal to 524288. The size you specify is rounded up to the next
16-page boundary. If you do not specify a size, a size of 16 MB is used.

Messages and Return Codes
BKWO0O0O7E RC=&1 RE=&2 from routine &3

106 z/vM V3R1.0 RSK Programmer's Guide and Reference

CACHE DELETE

CACHE DELETE

»»—CACHE—DELETE—cname

A

\

Pu rpose
Deletes a file cache.
Operands
chame
The name of the file cache to be deleted.
Options

None

Usage Notes
1. Once deletion starts, no more new files will be cached.

2. The deletion completes after the last file is closed.

Messages and Return Codes
BKWO0OO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 107

CACHE LIST

CACHE LIST

»»—CACHE—LIST

\
A

Purpose

Operands

Options

Usage Note

Messages and Return Codes

Lists the set of file caches.

None

None

The output form is:

Name Size

CACHE1 16384000
CACHEZ ~ 32768000

InUse FileCount Opens
433567 421 1633
2236541 28 4532

The columns have the following meanings:

Column
Name
Size
InUse
FileCount
Opens
Hits

Meaning

Name of cache

Cache size in bytes
Bytes in use in cache
Number of files in cache

Hits
1185
4158

Number of file opens processed
Number of cache hits on opens

BKW1500E No file caches found.

108 z/vM V3R1.0 RSK Programmer's Guide and Reference

CMS

CMS

\
A

»»—CMS—cms_command_string

Pu rpose

Provides a means of issuing CMS commands.
Operands

cms_command_string

The command string to pass to CMS.

Options

None
Usage Note

The command is issued by passing it to the CMS subcommand environment.

Messages and Return Codes
BKW1000l RC=&1 from CMS.

Chapter 14. Command Descriptions 109

CONFIG AUT_CACHE

CONFIG AUT_CACHE

\
A

»»—CONFIG—AUT_CACHE—rows

Pu rpose

Sets the number of authorization rows that will be cached.
Operands

rows

The number of rows to be cached.

Options

None
Usage Note

For rows, specify a positive integer.

Messages and Return Codes
None

110 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUT_DATA_1

CONFIG AUT_DATA 1

»»—CONFIG—AUT_DATA_1—filespec

\
A

Pu rpose
Sets the name of copy 1 of the authorization data file.
Operands
filespec
The name of copy 1 of the authorization data file.
Options

None

Usage Notes
1. For filespec, any string acceptable to DMSOPEN is acceptable.

2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes
None

Chapter 14. Command Descriptions 111

CONFIG AUT_DATA_2

CONFIG AUT_DATA 2

»»—CONFIG—AUT_DATA_2—filespec

\
A

Pu rpose
Sets the name of copy 2 of the authorization data file.
Operands
filespec
The name of copy 2 of the authorization data file.
Options

None

Usage Notes
1. For filespec, any string acceptable to DMSOPEN is acceptable.

2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.
3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes
None

112 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUT_FREE

CONFIG AUT_FREE

»»—CONFIG—AUT_FREE—rows

\
A

Pu rpose
Sets the maximum number of free buffers that will be retained for the purpose of
caching authorization rows.
Operands
rows
The maximum number of row buffers to retain.
Options
None
Usage Note

For rows, specify a positive integer.

Messages and Return Codes
None

Chapter 14. Command Descriptions 113

CONFIG AUT_INDEX_1

CONFIG AUT_INDEX_1

»»—CONFIG—AUT_INDEX_1—filespec

\
A

Pu rpose
Sets the name of copy 1 of the authorization index file.
Operands
filespec
The name of copy 1 of the authorization index file.
Options

None

Usage Notes
1. For filespec, any string acceptable to DMSOPEN is acceptable.

2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes
None

114 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUT_INDEX_2

CONFIG AUT_INDEX_2

»»—CONFIG—AUT_INDEX_2—filespec

\
A

Pu rpose
Sets the name of copy 2 of the authorization index file.
Operands
filespec
The name of copy 2 of the authorization index file.
Options

None

Usage Notes
1. For filespec, any string acceptable to DMSOPEN is acceptable.

2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.
3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes
None

Chapter 14. Command Descriptions 115

CONFIG AUT_LOCATION

CONFIG AUT_LOCATION

\
A

>>——CONFIG——AUT_LOCATION——I:MINIDISK
SFS

Pu rpose
Sets the repository type of the authorization database.
Operands
MINIDISK
The authorization database is stored on CMS minidisks.
SFS
The authorization database is stored in the CMS Shared File System.
Options
None
Usage Note

Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes
None

116 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUT_LOG

CONFIG AUT_LOG

»»—CONFIG—AUT_LOG—filespec

\
A

Pu rpose
Sets the name of the authorization lodfile.
Operands
filespec
The name of the authorization logfile.
Options

None

Usage Notes
1. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

2. For filespec, any syntax acceptable to DMSOPEN may be used.

3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes
None

Chapter 14. Command Descriptions 117

CONFIG AUTHCHECK_AUTH

CONFIG AUTHCHECK_AUTH

\
A

>>—CONFIG—AUTHCHECK_AUTH——0N—
OFF

Pu rpose
Controls whether the AUTH commands will be subject to authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

118 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUTHCHECK_CACHE

CONFIG AUTHCHECK_CACHE

\
A

>>—CONFIG—AUTHCHECK_CACHE——0N—
OFF

Pu rpose
Controls whether the CACHE commands will be subject to authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

Chapter 14. Command Descriptions 119

CONFIG AUTHCHECK_CMS

CONFIG AUTHCHECK_CMS

\
A

»»—CONFI6—AUTHCHECK_CMS——ON
OFF

Pu rpose
Controls whether the CMS service will perform authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

120 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUTHCHECK_CONFIG

CONFIG AUTHCHECK_CONFIG

\
A

»»—CONF1G—AUTHCHECK_CONF1G——ON
- Lorr]

Pu rpose
Controls whether the CONFIG commands will be subject to authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

Chapter 14. Command Descriptions 121

CONFIG AUTHCHECK_CP

CONFIG AUTHCHECK_CP

\
A

>>—CONFIG—AUTHCHECK_CP——ON—]
OFF

Pu rpose
Controls whether the CP service will perform authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

122 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUTHCHECK_ENROLL

CONFIG AUTHCHECK_ENROLL

\
A

>>—CONFIG—AUTHCHECK_ENROLL—-O0N—
OFF

Pu rpose
Controls whether the ENROLL service will perform authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

Chapter 14. Command Descriptions 123

CONFIG AUTHCHECK_LD

CONFIG AUTHCHECK_LD

\
A

>>—CONFIG—AUTHCHECK_LD——ON—]
OFF

Pu rpose
Controls whether line driver commands will be subject to authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

124 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUTHCHECK_MONITOR

CONFIG AUTHCHECK_MONITOR

\
A

>>—CONFIG—AUTHCHECK_MONITOR—~ON—]
OFF

Pu rpose
Controls whether the MONITOR service will perform authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

Chapter 14. Command Descriptions 125

CONFIG AUTHCHECK_SERVER

CONFIG AUTHCHECK_SERVER

\
A

>>—CONFIG—AUTHCHECK_SERVER——O0N—]
OFF

Pu rpose
Controls whether the SERVER commands will be subject to authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

126 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUTHCHECK_SGP

CONFIG AUTHCHECK_SGP

\
A

>>—CONFIG—AUTHCHECK_SGP——0N—
OFF

Pu rpose
Controls whether the SGP commands will be subject to authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

Chapter 14. Command Descriptions 127

CONFIG AUTHCHECK_TRIE

CONFIG AUTHCHECK_TRIE

\
A

>>—CONFIG—AUTHCHECK_TRIE——0N—
OFF

Pu rpose
Controls whether the TRIE service will perform authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

128 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG AUTHCHECK_USERID

CONFIG AUTHCHECK_USERID

\
A

>>—CONFIG—AUTHCHECK_USERTD——0N—
OFF

Pu rpose
Controls whether the USERID commands will be subject to authorization checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Usage Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

Chapter 14. Command Descriptions 129

CONFIG AUTHCHECK_WORKER

CONFIG AUTHCHECK_WORKER

\
A

>>—CONFIG—AUTHCHECK_WORKER——O0N—]
OFF

Pu rpose
Controls whether the WORKER commands will be subject to authorization
checking.
Operands
ON
Authorization checking will be performed.
OFF
Authorization checking will not be performed.
Options
None
Us age Note

For more information, see “Other Services' Use of Authorization” on page 46 and
Table 31 on page 75.

Messages and Return Codes
None

130 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG MEM_MAXFREE

CONFIG MEM_MAXFREE

»—CONFIG—MEM_MAXFREE—pages

\
A

Pu rpose
Sets the maximum number of pages that the reusable server kernel storage
manager will retain for a given subpool before returning storage from that subpool
to CMS.
Operands
pages
The maximum number of pages to retain.
Options
None
Usage Note

For pages, specify a positive integer.

Messages and Return Codes
None

Chapter 14. Command Descriptions 131

CONFIG MON_KERNEL_ROWS

CONFIG MON_KERNEL_ROWS

»>—CONFIG—MON_KERNEL_ROWS—rows

\
A

Pu rpose
Sets the number of monitor data rows the reusable server kernel will permit in the
Diagnose X'00DC' monitor buffer.
Operands
rows
The number of rows to permit.
Options

None

Usage Notes

1. A monitor row is 72 bytes wide, and CP lets CMS allocate a monitor buffer up
to 4024 bytes in size.

2. You must choose rows in range [36..55].

3. At r kernel rows, there are 4024-72*r bytes left over for user data.

Messages and Return Codes
None

132 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG MON_PRODUCT _ID

CONFIG MON_PRODUCT _ID

\
A

»—CONFIG—MON_PRODUCT_ID—identifier

Purpose
Sets the product identifier the reusable server kernel will use when it invokes
Diagnose X'00DC' to start APPLDATA monitor data collection.
Operands
identifier
The 16-byte identifier to use.
Options
None
Usage Notes
None

Messages and Return Codes
None

Chapter 14. Command Descriptions 133

CONFIG MON_USER_SIZE

CONFIG MON_USER_SIZE

»—CONFIG—MON_USER_SIZE—bytes

\
A

Pu rpose
Sets the size of the monitor buffer the reusable server kernel will reserve for
application use.
Operands
bytes
The number of bytes to reserve.
Options
None
Usage Note

The maximum number of bytes reservable is 1432 (4024 - 36*72).

Messages and Return Codes
None

134 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG MSG_NOHDR

CONFIG MSG_NOHDR

\
A

>>—CONFI6—5G_NOHDR—T—ON—]
OFF

Purpose
Controls whether the MSG/SMSG line driver will use the MSGNOH command to reply
to a client
Operands
ON
MSGNOH will be used.
OFF
MSG will be used.
Options
None
Usage Notes
None

Messages and Return Codes
None

Chapter 14. Command Descriptions 135

CONFIG NOMAP_APPC

CONFIG NOMAP_APPC

\
A

>>—CONFIG—NOMAP_APPC—T—ON—]
OFF

Purpose
Controls whether the APPC line driver will pass unmappable user IDs to a service
instance.
Operands
ON
Unmappable user IDs will be passed.
OFF
Unmappable user IDs will be rejected.
Options
None
Usage Notes
None

Messages and Return Codes
None

136 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG NOMAP_IUCV

CONFIG NOMAP_IUCV

\
A

>>—CONFIG—NOMAP_IUCY——ON—]
OFF

Pu rpose
Controls whether the IUCV line driver will pass unmappable user IDs to a service
instance.
Operands
ON
Unmappable user IDs will be passed.
OFF
Unmappable user IDs will be rejected.
Options
None
Usage Note

If NOMAP_IUCV is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes
None

Chapter 14. Command Descriptions 137

CONFIG NOMAP_MSG

CONFIG NOMAP_MSG

\
A

>>—CONFIG—NOMAP_MS6——ON—]
OFF

Pu rpose
Controls whether the MSG/SMSG line driver will pass unmappable user IDs to a
service instance.
Operands
ON
Unmappable user IDs will be passed.
OFF
Unmappable user IDs will be rejected.
Options
None
Usage Note

If NOMAP_MSG is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes
None

138 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG NOMAP_SPOOL

CONFIG NOMAP_SPOOL

\
A

>>—CONFIG—NOMAP_SPOOL—T—ON—]
OFF

Purpose
Controls whether the SPOOL line driver will pass unmappable user IDs to a service
instance.
Operands
ON
Unmappable user IDs will be passed.
OFF
Unmappable user IDs will be rejected.
Options
None
Usage Notes
None

Messages and Return Codes
None

Chapter 14. Command Descriptions 139

CONFIG NOMAP_TCP

CONFIG NOMAP_TCP

\
A

>>—CONFIG—NOMAP_TCP——ON—]
OFF

Pu rpose
Controls whether the TCP line driver will pass unmappable user IDs to a service
instance.
Operands
ON
Unmappable user IDs will be passed.
OFF
Unmappable user IDs will be rejected.
Options
None
Usage Note

If NOMAP_TCP is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes
None

140 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG NOMAP_UDP

CONFIG NOMAP_UDP

\
A

>>—CONFIG—NOMAP_UDP——ON—]
OFF

Pu rpose
Controls whether the UDP line driver will pass unmappable user IDs to a service
instance.
Operands
ON
Unmappable user IDs will be passed.
OFF
Unmappable user IDs will be rejected.
Options
None
Usage Note

If NOMAP_UDP is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes
None

Chapter 14. Command Descriptions 141

CONFIG RSCS_USERID

CONFIG RSCS_USERID

»»—CONFIG—RSCS_USERID—userid

A

\

Pu rpose
Sets the user ID of the virtual machine in which the SPOOL and MSG/SMSG line
drivers will assume RSCS is running.
Operands
userid
The user ID of the RSCS machine.
Options
None
Usage Note

Most installations will tailor PROFILE RSK so that it issues CMS's IDENTIFY
command, parses the response so as to obtain the user ID of the RSCS machine,
and then issues an appropriate CONFIG RSCS_USERID command.

Messages and Return Codes
None

142 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG SGP_FILE

CONFIG SGP_FILE

»»—CONFIG—SGP_FILE—filespec

\
A

Pu rpose
Sets the name of the storage group configuration file.
Operands
filespec
The string identifying the storage group configuration file.
Options

None

Usage Notes
1. For filespec, any string acceptable to DMSOPEN is acceptable.

2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes
None

Chapter 14. Command Descriptions 143

CONFIG SPL_CATCHER

CONFIG SPL_CATCHER

»»—CONFIG—SPL_CATCHER—userid

\
A

Pu rpose
Controls the user ID to which the SPOOL driver will transfer spool files it is unable
to decode.
Operands
userid
The user ID to which the SPOOL driver will transfer files it is unable to decode.
Options

None

Usage Notes

1. The SPOOL line driver is able to decode files sent in NETDATA (aka
SENDFILE NEW) or DISK DUMP (aka SENDFILE OLD) formats. All other
formats are undecodable.

2. If userid is *, the reusable server kernel will leave such files in the server's
reader in USER HOLD status.

Messages and Return Codes
None

144 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG SPL_INPUT_FT

CONFIG SPL_INPUT_FT

\
A

»»—CONFIG—SPL_INPUT_FT—filetype

Purpose

Controls the file type the SPOOL driver will recognize as input for a service.
Operands

filetype

The file type the SPOOL line driver will recognize.

Options

None
Usage Notes

None

Messages and Return Codes
None

Chapter 14. Command Descriptions 145

CONFIG SPL_OUTPUT_FT

CONFIG SPL_OUTPUT_FT

\
A

»»—CONFIG—SPL_OUTPUT_FT—filetype

Purpose

Controls the file type the SPOOL driver will produce as output from a service.
Operands

filetype

The file type the SPOOL line driver will produce.

Options

None
Usage Notes

None

Messages and Return Codes
None

146 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG SRV_THREADS

CONFIG SRV_THREADS

\
A

»—CONFIG—SRV_THREADS—threads

Purpose
Controls the number of threads on which a given line driver will attempt to run a
given service.
Operands
threads
The maximum number of threads on which a given line driver will attempt to
run a given service.
Options
None
Usage Notes
None

Messages and Return Codes
None

Chapter 14. Command Descriptions 147

CONFIG UMAP_FILE

CONFIG UMAP_FILE

\
A

»»—CONFIG—UMAP_FILE—filespec

Pu rpose

Sets the name of the user ID mapping file.
Operands

filespec

The string identifying the user ID mapping file.

Options

None
Usage Note

For filespec, any string acceptable to DMSOPEN is acceptable.

Messages and Return Codes
None

148 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG VM_CONSOLE

CONFIG VM_CONSOLE

\
A

>>—CONFIG—VM_CONSOLE—T—ON—]
OFF

Purpose
Controls whether the console line driver will pass unrecognized input to CMS for
execution.
Operands
ON
The console driver will pass unrecognized input to CMS.
OFF
The console driver will not pass unrecognized input to CMS.
Options
None
Usage Notes
None

Messages and Return Codes
None

Chapter 14. Command Descriptions 149

CONFIG VM_MSG

CONFIG VM_MSG

\
A

»»—CONF1G—VM_MSG——ON
— Lorpd

Purpose
Controls whether the MSG/SMSG line driver will pass unrecognized input to CMS
for execution.
Operands
ON
The MSG/SMSG driver will pass unrecognized input to CMS.
OFF
The MSG/SMSG driver will not pass unrecognized input to CMS.
Options
None
Usage Notes
None

Messages and Return Codes
None

150 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG VM_SPOOL

CONFIG VM_SPOOL

\
A

>>—CONFI6—VM_SPOOL—T-ON—
OFF

Purpose
Controls whether the SPOOL line driver will pass unrecognized input to CMS for
execution.
Operands
ON
The SPOOL driver will pass unrecognized input to CMS.
OFF
The SPOOL driver will not pass unrecognized input to CMS.
Options
None
Usage Notes
None

Messages and Return Codes
None

Chapter 14. Command Descriptions 151

CONFIG VM_SUBCOM

CONFIG VM_SUBCOM

\
A

>>—CONFI6—VM_SUBCOM—T-ON—]
OFF

Purpose
Controls whether the SUBCOM line driver will pass unrecognized input to CMS for
execution.
Operands
ON
The SUBCOM driver will pass unrecognized input to CMS.
OFF
The SUBCOM driver will not pass unrecognized input to CMS.
Options
None
Usage Notes
None

Messages and Return Codes
None

152 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONSOLE LIST

CONSOLE LIST

»>—CONSOLE—LIST

\
A

Purpose

Operands

Options

Usage Note

Lists the subtasks associated with the console line driver.

None

None

This command displays information about the services started through the console
line driver. The output form is:

Subtask Service Prefix Instances

0 CONSOLE CONSOLE 1
1 SERVER ~ SERVER 1

The columns have the following meanings:

Subtask The numeric identifier of the subtask.

Service The name of the started service.

Prefix The prefix used to send input to the service.

Instances The number of instances of the service the line driver is
controlling.

Messages and Return Codes

None

Chapter 14. Command Descriptions 153

CONSOLE QUERY

CONSOLE QUERY

»»—CONSOLE—QUERY—subtaskid

\
A

Pu rpose

Queries a specifis console subtask.
Operands

subtaskid

The identifier of the subtask to query.

Options

None
Usage Note

This command displays information about all of the instances of the requested
subtask. The output form is:

Instance C-block ThreadID Userid BytesIn BytesOut

1 O1EEOF5C 16 * 175 446

In this output, the columns have the following meanings:

Instance The numeric identifier of the instance.

C-block The address of the instance's C-block.

ThreadlD The CMS thread ID of the thread on which the instance is
running.

Userid The user ID of the client affiliated with the instance.

Bytesin The number of bytes the client has provided to the instance.

BytesOut The number of bytes the instance has provided to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

154 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONSOLE START

CONSOLE START

»»—CONSOLE—START—servicename

|—prefix—‘

\
A

Pu rpose
Starts a service, connecting it to the console line driver.
Operands
servicename
The name of the service to start, as specified on a call to ssServiceBind.
prefix
The prefix that will identify commands that should be sent to this service.
Options

None

Usage Notes

1. If prefix is not specified, the value of servicename is used for the prefix.

2. The started service is identified by a number called the subtask ID. Use this
identifier to refer to the started service in future commands.

Messages and Return Codes
BKWOOO5E Out of storage.
BKWO0200E Service not found.
BKWO0205E Prefix already in use.

BKWO206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

Chapter 14. Command Descriptions 155

CONSOLE STOP

CONSOLE STOP

\
A

»»—CONSOLE—STOP—subtaskid o]
NOW

Pu rpose
Stops a specific console subtask, optionally denying currently-connected clients the
privilege of completing their operations.
Operands
subtaskid
The identifier of the subtask to stop.
Options

NOW
Stop the subtask without letting current clients complete normally.

Usage Notes
None

Messages and Return Codes
BKWO0201E Subtask not found.
BKWO0202E Stop of self is prohibited.
BKWO0203I Subtask asked to STOP.
BKWO0204I Subtask killed.

156 z/vM V3R1.0 RSK Programmer's Guide and Reference

CpP

CP

»»—CP—cp_command_string

\
A

Pu rpose

Provides a means of issuing CP commands.
Operands

cp_command_string

The command string to pass to CP.

Options

None
Usage Note

The command is issued by passing it to CP through DIAG X'08".

Messages and Return Codes

BKW0900I RC=&1 from CP.
BKWO0901E CP response was truncated.
BKWO0902E CP command was too long.

Chapter 14. Command Descriptions

157

ENROLL COMMIT

ENROLL COMMIT

»»—ENROLL—COMMIT—set_name

\
A

Purpose

Commits changes to the named enrollment set.
Operands

set_name

The name of the set to be committed.

Options

None
Usage Note

For more information, see “Usage Notes” on page 274.

Messages and Return Codes
BKWO0007E RC=&1 RE=&2 from routine &3

158 z/vM V3R1.0 RSK Programmer's Guide and Reference

ENROLL DROP

ENROLL DROP

COMMIT—
»»—ENROLL—DROP—set_name

\ 4
A

|—ROLLBACK—

Purpose
Commits changes to the named enrollment set.
Operands
set_name
The name of the set to be committed.
COMMIT
The uncommitted changes should be committed.
ROLLBACK
The uncommitted changes should be rolled back.
Options
None
Usage Note

For more information, see “Usage Notes” on page 276.

Messages and Return Codes
BKWOO0OO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 159

ENROLL GET

ENROLL GET

\
A

»»—ENROLL—GET—set_name—key

Pu rpose
Retrieves a record from an enrollment set.
Operands
set_name
The name of the set to be interrogated.
key
The key of the record to be retrieved.
Options

None

Usage Notes

1. Due to parsing considerations, key must not contain a left parenthesis or a
space.

2. For more information, see “Usage Notes” on page 284.

Messages and Return Codes
BKWO0007E RC=&1 RE=&2 from routine &3

160 z/vM V3R1.0 RSK Programmer's Guide and Reference

ENROLL INSERT

ENROLL INSERT

\
A

»»—ENROLL—INSERT—set_name—key—data

Pu rpose
Inserts or replaces a record in an enroliment set.
Operands
set_name
The name of the set to be updated.
key
The key of the record to be inserted.
data
The data to be inserted.
Options

None

Usage Notes
1. Due to parsing considerations, key must not contain a left parenthesis or a

space.

2. The record is inserted with method ss_enr_insert_replace.

3. For more information, see “Usage Notes” on page 286.

Messages and Return Codes
BKWOO0OO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 161

ENROLL LIST

ENROLL LIST

»—ENROLL—LIST

\
A

Purpose
Generates a list of the loaded enrollment sets.
Operands
None
Options
None
Usage Note

For more information, see “ssEnrollList — List Enrollment Sets” on page 278.

Messages and Return Codes
BKWOO0O7E RC=&1 RE=&2 from routine &3

162 z/vM V3R1.0 RSK Programmer's Guide and Reference

ENROLL LOAD

ENROLL LOAD

\
A

»»—ENROLL—LOAD—se t_name—ED I SK;,—S ize—filename
MEM

Purpose

Loads an enrollment set from the Shared File System, or initializes a transient
enrollment set.

Operands

set_name
The name of the set to be loaded.

DISK
This is a permanent enrollment set.

MEM
This is a transient enroliment set.

size
The data space size to use, in pages.

filename
The file specification of the Shared File System file to be used.

Options

None

Usage Note

For more information, see “ssEnrollLoad — Load Enrollment Set” on page 280.

Messages and Return Codes
BKWOO0OO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 163

ENROLL RECLIST

ENROLL RECLIST

»»—ENROLL—RECLIST—set_name

\
A

Pu rpose

Generates a list of the keys of the records stored in the named enrollment set.
Operands

set_name

The name of the set to be interrogated.

Options

None
Usage Note

For more information, see “Usage Notes” on page 287.

Messages and Return Codes
BKWO0007E RC=&1 RE=&2 from routine &3

164 z/vM V3R1.0 RSK Programmer's Guide and Reference

ENROLL REMOVE

ENROLL REMOVE

»»—ENROLL—REMOVE—set_name—key

\
A

Pu rpose
Removes a record from an enrollment set.
Operands
set_name
The name of the set to be updated.
key
The key of the record to be removed.
Options

None

Usage Notes

1. Due to parsing considerations, key must not contain a left parenthesis or a
space.

2. For more information, see “Usage Notes” on page 289.

Messages and Return Codes
BKWO000O7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 165

IUCV LIST

IUCV LIST

»»—TUCV—LIST

\
A

Purpose

Operands

Options

Usage Note

Lists the subtasks associated with the IUCV line driver.

None

None

The output form is:

Subtask ServName ExitName Capacity InUse Threads Waiters

0 ECHO ECHO 40 0 1 0

The columns have the following meanings:

Subtask The numeric identifier of the subtask.

ServName The name of the started service.

ExitName The name of the IUCV exit for this subtask.

Capacity The number of clients this subtask can handle concurrently.
InUse The number of clients currently connected.

Threads The number of threads available to service clients of this subtask.
Waiters The number of clients waiting to be serviced.

Messages and Return Codes

BKWO0201E Subtask not found.

166 z/vM V3R1.0 RSK Programmer's Guide and Reference

IUCV QUERY

IUCV QUERY

»»—TUCV—QUERY—subtaskid

\
A

Pu rpose

Queries a specific IUCV subtask.
Operands

subtaskid

The identifier of the subtask to query.

Options

None
Usage Note

The output form is:

Instance C-Block Userid BytesIn BytesOut

32 01D2E6DC RICHARD 22 22

The columns have the following meanings:

Instance The numeric identifier of the instance.

C-Block The address of the C-block for this client.

Userid The mapped user ID of the client.

Byteslin The number of bytes the IUCV line driver has queued for the
instance.

BytesOut The number of bytes the instance has queued for the IUCV line

driver to transmit to the client.
Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

Chapter 14. Command Descriptions 167

IUCV REPORT

IUCV REPORT

»»—TUCV—REPORT N
o]
FF

\
A

Purpose

Operands

Options

Usage Note

Toggles reporting state for the IUCV line driver.

ON
Turns reporting on.

OFF
Turns reporting off.

None

When reporting is on, the IUCV line driver issues the following messages to
describe client activity:

e BKW1602I
* BKW1603I
e BKW1604I
* BKW1605I

For more information, see “IUCV Line Driver Messages” on page 432.

Messages and Return Codes

None

168 z/vM V3R1.0 RSK Programmer's Guide and Reference

IUCV START

IUCV START

»»—IUCV—START—servicename

\
A

‘—m i |
axclients
L

exi tnameJ

Purpose
Starts a service, connecting it to the IUCV line driver.
Operands
servicename
The name of the service to start, as specified on a call to ssServiceBind.
maxclients
The maximum number of concurrent clients permitted for the subtask.
exitname
The HNDIUCV exit name to be used for the subtask.
Options

None

Usage Notes
1. If maxclients is not specified, the current value of configuration parameter
SRV_THREADS is used.
2. If exitname is not specified, the value of servicename is used.

3. The started service is identified by a number called the subtask ID. Use this
identifier to refer to the started service in future commands.

Messages and Return Codes
BKWO0200E Service not found.
BKWO0207E Start of self is prohibited.
BKW1607E Client count must be greater than zero.
BKW1608E Unable to HNDIUCV SET.
BKW1609E Unable to create controlling thread.

Chapter 14. Command Descriptions 169

IUCV STOP

IUCV STOP

»»—IUCV—STOP—subtaskid

\
A

NOW
instance—

Purpose

Stops a specific [IUCV subtask, optionally denying currently-connected clients the
privilege of completing their operations, or stops a specific client and affiliated
instance.

Operands
subtaskid
The identifier of the subtask to stop.

instance
The number of the instance to stop.

Options
NOW
Stop the subtask without letting current clients complete normally.

Usage Notes

1. If NOW is specified, the subtask is stopped immediately and clients are not given
the opportunity to finish their work.

2. If instance is specified, only that specific connection is terminated.

Messages and Return Codes

BKWO0201E Subtask not found.
BKW1600I Instance STOP requested.
BKW1606E Wait expired for STOP.

170 z/vM V3R1.0 RSK Programmer's Guide and Reference

MONITOR DISPLAY

MONITOR DISPLAY

\
A

»»—MONITOR—DISPLAY: |_
Wﬁ
-name

Purpose
Displays one or more rows of monitor data.
Operands
type
The type of monitor row to display.
size
The name of a specific monitor row of the given type.
Options
None
Usage Notes
1. If type is not specified, all monitor rows are displayed.
2. If only type is specified, all rows of the specified type are displayed.
3. If both type and name are specified, the specific row described is displayed.
4. For each qualifying monitor row, the display consists simply of the address and

length of the row and the storage at those locations.

Messages and Return Codes
BKW1400E Matching monitor row not found.

Chapter 14. Command Descriptions 171

MONITOR USER

MONITOR USER

»»—MONITOR—USER

\
A

Purpose
Displays the user monitor buffer.
Operands
None
Options
None
Usage Note

The display consists simply of the address and length of the user monitor buffer
and the storage at those locations.

Messages and Return Codes
None

172 z/vM V3R1.0 RSK Programmer's Guide and Reference

MSG LIST

MSG LIST
»»—MSG—LIST > <
Purpose
Lists the subtasks associated with the MSG/SMSG line driver.
Operands
None
Options
None
Usage Note

This command displays information about the services started through the
MSG/SMSG line driver. The output form is:

Subtask Service Prefix Instances

0 MSG MSG 1
1 SERVER ~ SERVER 1

The columns have the following meanings:

Subtask The numeric identifier of the subtask.

Service The name of the started service.

Prefix The prefix used to send input to the service.

Instances The number of instances of the service the line driver is
controlling.

Messages and Return Codes

None

Chapter 14. Command Descriptions 173

MSG QUERY

MSG QUERY

»»—MSG—QUERY—subtaskid

\
A

Pu rpose

Queries a specific MSG/SMSG subtask.
Operands

subtaskid

The identifier of the subtask to query.

Options

None
Usage Note

This command displays information about all of the instances of the requested
subtask. The output form is:

Instance C-block ThreadID Userid BytesIn BytesOut

1 O1EEQF5C 16 BKW 175 446

In this output, the columns have the following meanings:

Instance The numeric identifier of the instance.

C-block The address of the instance's C-block.

ThreadlD The CMS thread ID of the thread on which the instance is
running.

Userid The user ID of the client affiliated with the instance.

Bytesin The number of bytes the client has provided to the instance.

BytesOut The number of bytes the instance has provided to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

174 z/vM V3R1.0 RSK Programmer's Guide and Reference

MSG START

MSG START

»»—MSG—START—servicename

|—pr‘efixJ

\
A

Pu rpose
Starts a service, connecting it to the MSG/SMSG line driver.
Operands
servicename
The name of the service to start, as specified on a call to ssServiceBind.
prefix
The prefix that will identify commands that should be sent to this service.
Options

None

Usage Notes
1. If prefix is not specified, then the value of servicename is used for the prefix.

2. The started service is identified by a number called the subtask ID. Use this
identifier to refer to the started service in future commands.

Messages and Return Codes
BKWOOO5E Out of storage.
BKWO0200E Service not found.
BKWO0205E Prefix already in use.

BKWO206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

Chapter 14. Command Descriptions 175

MSG STOP

MSG STOP

\
A

»»—MSG—STOP—subtaskid o]
NOW

Pu rpose
Stops a specific MSG/SMSG subtask, optionally denying currently-connected clients
the privilege of completing their operations.
Operands
subtaskid
The identifier of the subtask to stop.
Options

NOW
Stop the subtask without letting current clients complete normally.

Usage Notes
None

Messages and Return Codes
BKWO0201E Subtask not found.
BKWO0202E Stop of self is prohibited.
BKWO0203I Subtask asked to STOP.
BKWO0204I Subtask killed.

176 z/vM V3R1.0 RSK Programmer's Guide and Reference

SERVER SERVICES

SERVER SERVICES

\
A

»—SERVER—SERVICES

Purpose
Displays a summary of the bound services.
Operands
None
Options
None
Usage Note

This command causes the reusable server kernel to display a list of the bound
services with some descriptive information about each service. The output form is:

Service S-block Type Init Service Term Count
USERID OIEFEF40 N 00000000 81E94530 81E94D18 0
SERVER OIEFEF70 N 00000000 81E94530 81E94D18 1
CONFIG O1EFEFAG N 00000000 81E94530 81E94D18 1
CONSOLE OIEFEFDO LDSS 81E93478 81E939C8 81E94408 1

The meanings of the columns are:

Service The name of the bound service.
S-block The address of the service's S-block.
Type The type of the bound service. Types are:
N Normal service
LD Line driver
LDSS Self-sourced line driver
Init The address of the service's initialization routine.
Service The address of the service's service routine.
Term The address of the service's termination routine.
Count The number of line drivers that have started this service.

Messages and Return Codes
None

Chapter 14. Command Descriptions 177

SERVER MONITOR

SERVER MONITOR

»—SERVER—MONITOR

\
A

Purpose
Gives information about the Diagnose X'00DC' monitor buffer.
Operands
None
Options
None
Usage Note

This command tells the user the:

e Location of the monitor buffer

¢ Size of the monitor buffer

e Number of rows in the monitor buffer

¢ Number of free rows in the monitor buffer

Messages and Return Codes
BKWO0301I Monitor buffer at &1.&2, &3 rows, &4 free

178 z/vM V3R1.0 RSK Programmer's Guide and Reference

SERVER STOP

SERVER STOP

\
A

»—SERVER—STOP

Purpose
Stops the server and the reusable server kernel.
Operands
None
Options
None
Usage Note

Issuing this command is equivalent to calling entry point ssServerStop. Both of
these facilities cause WAITSERV to complete.

Messages and Return Codes
None

Chapter 14. Command Descriptions 179

SGP CREATE

SGP CREATE

»»—SGP—CREATE—sgn ! disk

m

\ 4
A

Pu rpose
Creates a storage group.
Operands
sgn
The number of the storage group to create.
mdisk
The device number of a minidisk to be used for the storage group.
Options
None
Usage Note

For more information, see “Usage Notes” on page 305.

Messages and Return Codes
BKWO0O0OO7E RC=&1 RE=&2 from routine &3

180 z/vM V3R1.0 RSK Programmer's Guide and Reference

SGP DELETE

SGP DELETE

\
A

»»—SGP—DELETE—sgn

Pu rpose

Deletes a storage group.
Operands

sgn

The number of the storage group to delete.

Options

None
Usage Note

For more information, see “Usage Notes” on page 306.

Messages and Return Codes
BKWO0007E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 181

SGP LIST

SGP LIST
»»—SGP—LIST ><
Purpose
Displays a list of the known storage groups.
Operands
None
Options
None

Usage Notes

1. This command causes the reusable server kernel to display a list of the known
storage groups. The output format is:

SGrp Name Blocks I0Mode Status
2 main 4000 b1k-rw 40000000
5 spare 82400 bT1k-ro 20000000
The meanings of the columns are:
SGrp The storage group number.
Name The name of the storage group.
Blocks The total number of 4 KB blocks in the storage group.
IOMode The mode in which the storage group was started.
off not started
blk-ro block mode read-only
blk-rw block mode read-write
Status Status bits

X'80000000" Stop is in progress
X'40000000" I/O using VM Data Spaces
X'20000000' I/0 using DIAG X'250'

2. For more information, see “Usage Notes” on page 310 and “Usage Notes” on
page 313.

Messages and Return Codes

BKWOOO5E Out of storage.
BKWOOO7E RC=&1 RE=&2 from routine &3

182 z/vM V3R1.0 RSK Programmer's Guide and Reference

SGP MDLIST

SGP MDLIST

»»—SGP—MDLIST—sgn

\
A

Pu rpose
Displays specific information about the minidisks of a storage group.
Operands
sgn
The number of the storage group to interrogate.
Options

None

Usage Notes

1. This command causes the reusable server kernel to display a list of the
minidisks associated with a given storage group. The output format is:

VDev Blocks

1004 34006

OFC2 14200

The meanings of the columns are:

VDev The device number of the minidisk.

Total The number of 4 KB blocks on the minidisk.

2. For more information, see “Usage Notes” on page 313.

Messages and Return Codes

BKWOOO5E Out of storage.
BKWOO0OO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 183

SGP START

SGP START

»»—SGP—START—sgn—groupname

—BLOCKRW —DS
i:B LOCKRO DS—
BLOCKRW NODS—

Purpose

Operands

Options

Usage Note

Starts a specific storage group.

sgn
The number of the storage group to start.

groupname
The symbolic name to be assigned to the storage group.

BLOCKRO
The storage group should be started in block mode read-only.

BLOCKRW
The storage group should be started in block mode read-write.

DS
The reusable server kernel should attempt to use VM Data Spaces for 1/O.

NODS
The reusable server kernel should not attempt to use VM Data Spaces for /0.

None

For more information, see “Usage Notes” on page 317.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

184 z/vM V3R1.0 RSK Programmer's Guide and Reference

SGP STOP

SGP STOP

\
A

»»—SGP—STOP—sgn

Pu rpose

Stops a specific storage group.
Operands

sgn

The number of the storage group to stop.

Options

None
Usage Note

For more information, see “Usage Notes” on page 320.

Messages and Return Codes
BKWO0007E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 185

SPOOL LIST

SPOOL LIST

»>—SPOOL—LIST

\
A

Purpose

Operands

Options

Usage Note

Lists the subtasks associated with the SPOOL line driver.

None

None

This command displays information about the services started through the spool
line driver. The output form is:

Subtask Service Prefix Instances

0 SPOOL SPOOL 1
1 SERVER ~ SERVER 1

The columns have the following meanings:

Subtask The numeric identifier of the subtask.

Service The name of the started service.

Prefix The file name used to send input to the service.

Instances The number of instances of the service the line driver is
controlling.

Messages and Return Codes

None

186 z/vM V3R1.0 RSK Programmer's Guide and Reference

SPOOL QUERY

SPOOL QUERY

»»—SPOOL—QUERY—subtaskid

\
A

Pu rpose
Queries a specific SPOOL subtask.
Operands
subtaskid
The identifier of the subtask to query.
Options

None

Usage Notes

This command displays information about all of the instances of the requested
subtask. The output form is:

Instance C-block ThreadID Userid BytesIn BytesOut

1 O1EEQF5C 16 BKW 175 446

In this output, the columns have the following meanings:

Instance The numeric identifier of the instance.

C-block The address of the instance's C-block.

ThreadlD The CMS thread ID of the thread on which the instance is
running.

Userid The user ID of the client affiliated with the instance.

Bytesin The number of bytes the client has provided to the instance.

BytesOut The number of bytes the instance has provided to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

Chapter 14. Command Descriptions 187

SPOOL START

SPOOL START

»»—SPOOL—START—servicename—spool fn

\
A

Pu rpose
Starts a service, connecting it to the SPOOL line driver.
Operands
servicename
The name of the service to start, as specified on a call to ssServiceBind.
spoolfn
The file name of spool files that should be directed to this service.
Options

None

Usage Notes

1. If prefix is not specified, then the value of servicename is used for the prefix.

2. The started service is identified by a number called the subtask ID. Use this
identifier to refer to the started service in future commands.

Messages and Return Codes
BKWOOO5E Out of storage.
BKWO0200E Service not found.
BKWO0205E Prefix already in use.

BKWO0206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

188 z/vM V3R1.0 RSK Programmer's Guide and Reference

SPOOL STOP

SPOOL STOP

\
A

»»—SPOOL—STOP—subtaskid o]
NOW

Pu rpose
Stops a specific SPOOL subtask, optionally denying currently-connected clients the
privilege of completing their operations.
Operands
subtaskid
The identifier of the subtask to stop.
Options

NOW
Stop the subtask without letting current clients complete normally.

Usage Notes
None

Messages and Return Codes
BKWO0201E Subtask not found.
BKWO0202E Stop of self is prohibited.
BKWO0203I Subtask asked to STOP.
BKWO0204I Subtask killed.

Chapter 14. Command Descriptions 189

SUBCOM LIST

SUBCOM LIST

»>—SUBCOM—LIST

\
A

Purpose
Lists the subtasks associated with the SUBCOM line driver.
Operands
None
Options
None
Usage Note

This command displays information about the services started through the
SUBCOM line driver. The output form is:

Subtask Service Prefix Instances

0 SUBCOM SUBCOM 1
1 SERVER ~ SERVER 1

The columns have the following meanings:

Subtask The numeric identifier of the subtask.

Service The name of the started service.

Prefix The prefix used to send input to the service.

Instances The number of instances of the service the line driver is
controlling.

Messages and Return Codes
None

190 z/vM V3R1.0 RSK Programmer's Guide and Reference

SUBCOM QUERY

SUBCOM QUERY

»»—SUBCOM—QUERY—subtaskid

\
A

Pu rpose

Queries a specific SUBCOM subtask.
Operands

subtaskid

The identifier of the subtask to query.

Options

None
Usage Note

This command displays information about all of the instances of the requested
subtask. The output form is:

Instance C-block ThreadID Userid BytesIn BytesOut

1 O1EEOF5C 16 * 175 446

In this output, the columns have the following meanings:

Instance The numeric identifier of the instance.

C-block The address of the instance's C-block.

ThreadlD The CMS thread ID of the thread on which the instance is
running.

Userid The user ID of the client affiliated with the instance.

Bytesin The number of bytes the client has provided to the instance.

BytesOut The number of bytes the instance has provided to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

Chapter 14. Command Descriptions 191

SUBCOM START

SUBCOM START

»»—SUBCOM—START—servicename

|—pr‘efix—l

\
A

Pu rpose
Starts a service, connecting it to the SUBCOM line driver.
Operands
servicename
The name of the service to start, as specified on a call to ssServiceBind.
prefix
The prefix that will identify commands that should be sent to this service.
Options

None

Usage Notes
1. If prefix is not specified, the value of servicename is used for the prefix.

2. The started service is identified by a number called the subtask ID. Use this
identifier to refer to the started service in future commands.

Messages and Return Codes
BKWOOO5E Out of storage.
BKWO0200E Service not found.
BKWO0205E Prefix already in use.

BKWO206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

192 z/vM V3R1.0 RSK Programmer's Guide and Reference

SUBCOM STOP

SUBCOM STOP

\
A

»»—SUBCOM—STOP—subtaskid o]
NOW

Pu rpose
Stops a specific SUBCOM subtask, optionally denying currently-connected clients
the privilege of completing their operations.
Operands
subtaskid
The identifier of the subtask to stop.
Options

NOW
Stop the subtask without letting current clients complete normally.

Usage Notes
None

Messages and Return Codes
BKWO0201E Subtask not found.
BKWO0202E Stop of self is prohibited.
BKWO0203I Subtask asked to STOP.
BKWO0204I Subtask killed.

Chapter 14. Command Descriptions 193

TCP LIST

TCP LIST
»»—TCP—LIST >
Purpose
Lists the subtasks associated with the TCP/IP line driver.
Operands
None
Options
None
Usage Note

This command displays information about the services started through the TCP/IP
line driver. The output form is:

Subtask ServName BPort Adapter_Address TCPStack Sokts InUse Thrds

2 WEBSERV 80 0.0.0.0 TCPIP 100 17 31
4 WEBADMIN 90 9.117.32.29 TCPIP 50 4 13

The columns have the following meanings:

Subtask The numeric identifier of the subtask.

ServName The name of the started service.

BPort The port number to which the service is bound.

Adapter_Address The adapter address to which the port is bound.

TCPStack The user ID of the TCP/IP virtual machine through which this
subtask's TCP activity is taking place.

Sokts The number of sockets available to the subtask.

InUse The number of sockets currently in use.

Thrds The number of CMS threads servicing this subtask.

Messages and Return Codes
BKWO0201E Subtask not found.

194 z/vM V3R1.0 RSK Programmer's Guide and Reference

TCP QUERY

TCP QUERY

»»—TCP—QUERY—subtaskid

\
A

Purpose
Queries a specific TCP/IP subtask.
Operands
subtaskid
The identifier of the subtask to query.
Options
None
Usage Note
The ouput form is:
Instance C-Block Userid RPort Remote Host BytesIn BytesOut
2 030F0210 PAUL 1401 9.130.79.171 165 32436
5 030F0500 FRED 833 9.117.32.29 8223 11234385

The columns and their meanings are:

Instance The numeric identifier of this instance.

C-Block The address of the instance's C-block.

Userid The mapped user ID of the client being served by this instance,
as produced by the ssUseridMap.

RPort The port number through which the client's connection is exiting

the client computer.
Remote_Host The IP address of the client computer.
ByteslIn The number of bytes received from the client so far.
BytesOut The number of bytes sent to the client so far.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

Chapter 14. Command Descriptions 195

TCP REPORT

TCP REPORT

»»—TCP—REPORT N
o
FF

\
A

Purpose

Operands

Options

Usage Note

Toggles reporting state for the TCP/IP line driver.

ON
Turns reporting on.

OFF
Turns reporting off.

None

When reporting is on, the TCP/IP line driver issues the following messages to
describe client activity:

* BKWO0500!I
* BKWO0501I
e BKWO0502I
e BKWO0504I

For more information, see “TCP and UDP Line Driver Messages” on page 417.

Messages and Return Codes

None

196 z/vM V3R1.0 RSK Programmer's Guide and Reference

TCP START

TCP START

|—50—0.0.0.0—TCPIr

L I—O.O.O.O—TCPIP—
sockets
|—TCPIP—

»»—TCP—START—servicename—port

\ 4
A

adapter

tcpname—

Pu rpose
Starts a service, connecting it to the TCP line driver.
Operands
servicename
The name of the service to start, as specified on a call to ssServiceBind.
port
The port number on which the reusable server kernel should make the service
available.
sockets
The number of sockets the reusable server kernel should make available for
this port.
adapter
The IP address of the adapter over which you want this service to accept
requests (specify 0.0.0.0 to mean “any of this VM system's adapters”).
tcpname
The name of the TCP/IP service machine through which the reusable server
kernel should access the TCP/IP network.
Options

None

Usage Notes
1. Operand port must be between 1 and 65535 inclusive.

2. Operand sockets must be between 50 and 2000 inclusive.

3. The started service is identified by a number called the subtask ID. Use this
identifier to refer to the started service in future commands.

Chapter 14. Command Descriptions 197

TCP START

Messages and Return Codes

BKWO0200E Service not found.

BKWO0207E Start of self is prohibited.

BKWO0513E Port number must be in range [0..65535].
BKWO0514E Socket count must be in range [50..2000].
BKWOOO5E Out of storage.

BKWO516E Creation of subtask controller thread failed.
BKWO0517E Creation of TCP/IP socket group failed.
BKWO518E Creation of listen socket failed.

BKWO0519E Setting listen socket to SO_REUSEADDR failed.
BKWO0520E Setting listen socket to nonblocking failed.
BKWO0521E bind() for listen socket failed.

BKWO0522E listen() for listen socket failed.

198 z/vM V3R1.0 RSK Programmer's Guide and Reference

TCP STOP

TCP STOP

\
A

»»—TCP—STOP—subtaskid L_ _J
NOW

Pu rpose
Stops a specific TCP/IP subtask, optionally denying currently-connected clients the
privilege of completing their operations.
Operands
subtaskid
The identifier of the subtask to stop.
Options

NOW
Stop the subtask without letting current clients complete normally.

Usage Notes
None

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0523I Instance STOP requested.
BKWO0524E Wait expired for STOP.

Chapter 14. Command Descriptions 199

TRIE LIST

TRIE LIST

»»—TRIE—LIST

\
A

Purpose

Operands

Options

Usage Note

Lists the tries created by this virtual machine.

None

None

The output form is:

Name ASIT LastFree NextFree Nodes Records

DO000OO1 7690F9000000001E 7FFFFFFF 0F4585B8 3050166 421008
D0000002 7690F88000000008 3FFFFFFF 2B934EEC 8697007 421008

The columns have the following meanings:

Name The trie name supplied by the creator.

ASIT The ASIT of the data space containing the trie.

LastFree The address of the last byte of the trie data space.
NextFree The address of the next free byte in the trie data space.
Nodes The number of nodes in the trie.

Records The number of record numbers being held onto by the trie.

Messages and Return Codes

BKW1900E No tries found.

200 z/VM V3R1.0 RSK Programmer's Guide and Reference

UDP LIST

UDP LIST
»»—UDP—LIST >«
Purpose
Lists the subtasks associated with the UDP/IP line driver.
Operands
None
Options
None
Usage Note

This command displays information about the services started through the UDP/IP
line driver. The output form is:

Subtask ServName BPort Adapter_Address TCPStack InProg Thrds

2 MYSERV 85 0.0.0.0 TCPIP 17 31
4 MYADMIN 95 9.117.32.29 TCPIP 4 13

The columns have the following meanings:

Subtask The numeric identifier of the subtask.

ServName The name of the started service.

BPort The port number to which the service is bound.

Adapter_Address The adapter address to which the port is bound.

TCPStack The user ID of the TCP/IP virtual machine through which this
subtask's UDP activity is taking place.

InProg The number of transactions in progress at the moment.

Thrds The number of CMS threads servicing this subtask.

Messages and Return Codes

BKWO0201E Subtask not found.

Chapter 14. Command Descriptions 201

UDP QUERY

UDP QUERY

»»—UDP—QUERY—subtaskid

\
A

Purpose

Operands

Options

Usage Note

Queries a specific UDP/IP subtask.

subtaskid
The identifier of the subtask to query.

None

The output form is:

Instance C-Block Userid RPort Remote Host BytesIn BytesOut
2 030F0210 PAUL 1401 9.130.79.171 165 0
5 030F0500 FRED 833 9.117.32.29 8223 0

The columns and their meanings are:

Instance The numeric identifier of this instance.

C-Block The address of the instance's C-block.

Userid The mapped user ID of the client being served by this instance,
as produced by the ssUseridMap.

RPort The port number through which the client's connection is exiting

the client computer.
Remote_Host The IP address of the client computer.
ByteslIn The number of bytes received from the client so far.
BytesOut The number of bytes sent to the client so far.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

202 z/VM V3R1.0 RSK Programmer's Guide and Reference

UDP REPORT

UDP REPORT

\
A

»»—UDP—REPORT N
o
FF

Purpose
Toggles reporting state for the UDP/IP line driver.
Operands
ON
Turns reporting on.
OFF
Turns reporting off.
Options
None
Usage Note

When reporting is on, the UDP/IP line driver issues the following messages to
describe client activity:

BKWO0500I
BKWO0501I
BKWO0502I
BKWO05041

For more information, see “TCP and UDP Line Driver Messages” on page 417.

Messages and Return Codes
None

Chapter 14. Command Descriptions 203

UDP START

UDP START

»»—UDP—START—servicename—port

|—0.0.0.0—TCPIP—

\ 4
A

TCPIP—

|—adapter

tcpname—

Purpose

Operands

Options

Usage Notes

Starts a service, connecting it to the UDP line driver.

servicename
The name of the service to start, as specified on a call to ssServiceBind.

port
The port number on which the reusable server kernel should make the service
available.

adapter
The IP address of the adapter over which you want this service to accept
requests (specify 0.0.0.0 to mean “any of this VM system's adapters”).

tcpname
The name of the TCP/IP service machine through which the reusable server
kernel should access the TCP/IP network.

None

1. Operand port must be between 1 and 65535 inclusive.

2. The started service is identified by a number called the subtask ID. Use this
identifier to refer to the started service in future commands.

Messages and Return Codes

BKWO0200E Service not found.

BKWO0207E Start of self is prohibited.

BKWO0513E Port number must be in range [0..65535].
BKWO0514E Socket count must be in range [50..2000].
BKWOOO5E Out of storage.

BKWO516E Creation of subtask controller thread failed.
BKWO0517E Creation of TCP/IP socket group failed.
BKWO518E Creation of listen socket failed.

BKWO0519E Setting listen socket to SO_REUSEADDR failed.
BKWO0520E Setting listen socket to nonblocking failed.

204 z/vM V3R1.0 RSK Programmer's Guide and Reference

UDP START

BKWO0521E bind() for listen socket failed.
BKWO0522E listen() for listen socket failed.

Chapter 14. Command Descriptions 205

UDP STOP

UDP STOP

\
A

»»—UDP—STOP—subtaskid L_ _J
NOW

Pu rpose
Stops a specific UDP/IP subtask, optionally denying currently-connected clients the
privilege of completing their operations.
Operands
subtaskid
The identifier of the subtask to stop.
Options

NOW
Stop the subtask without letting current clients complete normally.

Usage Notes
None

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0523I Instance STOP requested.
BKWO0524E Wait expired for STOP.

206 z/VM V3R1.0 RSK Programmer's Guide and Reference

USERID MAP

USERID MAP

\
A

»»—USERID—MAP—ILine_driver_name—node—user

Pu rpose
Interrogates the user ID mapping file.
Operands
line_driver_name
The name of the line driver whose mapping is being interrogated.
node
The nodename as known to the specified line driver.
user
The user ID as known to the specified line driver.
Options
None
Usage Note

The mapping is interrogated and the result displayed.
Messages and Return Codes

BKWO0401l &1 &2 &3 maps to &4
BKWO0402E RC=&1 RE=&2 mapping &3 &4 &5

Chapter 14. Command Descriptions 207

USERID RELOAD

USERID RELOAD

»—USERID—RELOAD

\
A

Purpose
Reloads the user ID mapping file.
Operands
None
Options
None
Usage Note

The user ID mapping file is reloaded from whatever file is nominated by
configuration parameter UMAP_FILE.

Messages and Return Codes
BKWO0400E Reload failed - DMSOPEN or DMSREAD RC=&1 RE=&2.

208 z/VM V3R1.0 RSK Programmer's Guide and Reference

WORKER ADD

WORKER ADD

1
»»—WORKER—ADD—c lassname—userid [
capacity—

\ 4
A

Purpose
Adds a worker machine to a worker class, creating the class if the class does not
yet exist.
Operands
classname
The name of the worker class to which the worker machine should be added.
userid
The user ID of the worker virtual machine.
capacity
The number of IUCV connections the worker machine is capable of handling
concurrently.
Options

1 The worker is capable of handling one connection at a time.

Usage Notes
1. Case is significant in class names.

2. Do not add a given worker virtual machine to more than one worker class.
Unpredictable results will occur.

Messages and Return Codes
BKW1800E Worker machine is already in the specified class.

Chapter 14. Command Descriptions 209

WORKER CLASSES

WORKER CLASSES

\
A

»—WORKER—CLASSES

Purpose

Operands

Options

Usage Note

Displays summary information about the worker classes.

None

None

The output format is:

Class D Machines C-Limit C-InUse
cgiserv n 2 2 0

The columns have the following meanings:

Column Meaning

Class Name of class

D Whether workers are being managed as if they might be
distributed on other nodes
y Managed as if distributed
n Managed as if local

Machines Number of worker machines

C-Limit Total number of connections permitted

C-InUse Number of connections at the moment

Messages and Return Codes

BKW1803E No worker classes defined.

210 z/vM V3R1.0 RSK Programmer's Guide and Reference

WORKER DELCLASS

WORKER DELCLASS

\
A

»»—WORKER—DELCLASS—classname |_ _|
FORCE

Purpose

Deletes a worker class, requesting instances to close their connections to the
workers therein.

Operands

classname
The name of the worker class being deleted.

FORCE
The server kernel should forcibly sever the [IUCV connections to the workers in
the class.

Options

None

Usage Notes
1. Case is significant in class names.
2. If FORCE is not specified, the server kernel sends each instance a message

asking it to end its connections with its workers in the affected class. Each
instance is expected to finish up quickly and end its connection.

3. If FORCE is specified, the server kernel will TUCV SEVER all connections to
workers in the class and inform each affected instance that its connections to
those workers have been lost. After this, each worker machine found to be
running disconnected will be forced off through CP FORCE.

Messages and Return Codes
BKW1802E Worker class not found.

Chapter 14. Command Descriptions 211

WORKER DELETE

WORKER DELETE

\
A

»»—WORKER—DELETE—userid
L _
FORCE

Pu rpose
Deletes a single worker machine from its class.
Operands
userid
The user ID of the worker virtual machine.
FORCE
The server kernel should forcibly break any existing IUCV connections to the
worker machine.
Options

None

Usage Notes
1. If FORCE is not specified, the server kernel sends each affected instance a
message asking it to end its connections with the worker. The instances are
expected to finish up quickly and end their connections to the worker.

2. If FORCE is specified, the server kernel will TUCV SEVER all connections to the
worker and inform each affected instance that its connections to the worker
have been lost. After this, if the worker is found to be running disconnected, it
will be forced off through CP FORCE.

Messages and Return Codes
BKW1801E Worker machine not found.

212 z/vM V3R1.0 RSK Programmer's Guide and Reference

WORKER DISTRIBUTE

WORKER DISTRIBUTE

»»—WORKER—DISTRIBUTE—c Zassname—[ON _|

\
A

OFF

Purpose

Operands

Options

Usage Notes

Controls whether the reusable server kernel will attempt to manage a worker class
as if the worker machines were located on other systems.

classname

The name of the worker class to which the command applies.

Manage as if distributed.

OFF

Manage as if local.

None

1. Case is significant in class names.

2. When you set DISTRIBUTE OFF for a class, the reusable server kernel

manages the workers as if they were running on the same instance of CP as
the server itself. More specifically, the reusable server kernel uses the
XAUTOLOG and FORCE commands to control the workers in the class. For
example, if the server kernel determines that another worker needs to be
logged on, it will issue XAUTOLOG to log on the new worker.

. When you set DISTRIBUTE ON for a class, the reusable server kernel

manages the workers as if they might be running on other systems. In
particular, the reusable server kernel suppresses any attempts it might make to
use the XAUTOLOG or FORCE commands to manage the worker machines in the
class. Instead, responsibility for managing the machines is left to the server
operator or system programmer.

Messages and Return Codes

BKW1802E Worker class not found.

Chapter 14. Command Descriptions 213

WORKER MACHINES

WORKER MACHINES

»»—WORKER—MACHINES—classname

\
A

Pu rpose
Displays a table of status information about worker machines in a given class.
Operands
classname
The name of the class for which worker status should be displayed.
Options

None

Usage Notes
1. Case is significant in class names.

2. The output form is:

Machine State S Capacity InUse

MPTOO2 - 01 0
The columns have the following meanings:

Column Meaning
Machine The user ID of the worker machine
State What CP QUERY USER reports about the worker machine, or - if
the worker is not logged on
S The status of the worker machine, as follows:
0 Seems usable
1 Repeated FORCE-XAUTOLOG cycles did not bring this
worker to life
2 Tried to XAUTOLOG this worker but could not do so -
possible insufficient privilege to use XAUTOLOG
command
3 Unrecoverable error trying to IUCV CONNECT
4 Tried to reset worker through CP FORCE but command
failed - possible insufficient privilege to use FORCE
5 CP FORCE succeeded but virtual machine did not log
off - worker machine appears hung
Capacity The number of IUCV connections the worker can handle
concurrently
InUse The number of IUCV connections to the worker right now

214 z/vM V3R1.0 RSK Programmer's Guide and Reference

WORKER MACHINES

Messages and Return Codes

BKW1802E Worker class not found.
BKW1805E No worker machines found.

Chapter 14. Command Descriptions 215

WORKER RESET

WORKER RESET

\
A

»»—WORKER—RESET—classname
|_ d J
userid-

Pu rpose
Resets the status information the server kernel retains about a worker machine.
Operands
classname
The name of the class to be reset.
userid
The specific worker machine whose status is to be reset.
Options

None

Usage Notes
1. Case is significant in class names.

2. This command is meant to be used after manual intervention has supposedly
resolved the problems the server kernel has detected in trying to use a worker
machine or a class of worker machines. For example, the system administrator
might have omitted the IUCV ALLOW statements in the workers' CP directory
entries, and when the server attempted to use those workers, it found it could
not connect to them. Once the CP directory has been repaired, WORKER RESET
can be used to wipe out the server kernel's memory of the difficulty.

3. If userid is omitted, the status for all machines in the class is reset.
Messages and Return Codes

BKW1801E Worker machine not found.
BKW1802E Worker class not found.

216 z/VvM V3R1.0 RSK Programmer's Guide and Reference

WORKER STATUS

WORKER STATUS

»»—WORKER—STATUS

|—classnameJ

\
A

Purpose

Operands

Options

Usage Notes

Displays information about the current set of connections to worker machines.

classname

The name of the worker class for which status information should be displayed.

None

1. Case is significant in class names.

2. The output form is:

Class Machine W-CBlock I-CBlock I-Service

cgiserv MPTO01 O3FF3048 O03FE21F8 HTTP

The columns and their meanings are:

Column Meaning

Class The worker class involved

Machine The worker machine to which the connection leads
W-CBlock The address of the worker C-block

I-CBlock The address of the instance C-block

I-Service The service with which the instance is affiliated

Messages and Return Codes

BKW1802E Worker class not found.
BKW1804E No worker connections found.

Chapter 14. Command Descriptions

217

WORKER STATUS

218 z/vM V3R1.0 RSK Programmer's Guide and Reference

Chapter 15. Function Descriptions

This chapter describes application programming interfaces (APIs) provided as part
of the reusable server kernel. To review, the APIs can be patrtitioned into a number

of subsets:

Table 44. Programming Interfaces

Subset Description
Anchor Provides a means for manipulating an anchor word.
Authorization Provides a means for manipulating an authorization
database.
Cache Provides a means for manipulating cached files.
Client Provides a means for manipulating buffers of client data.
Enroll Provides a means for manipulating enroliment data.
Memory Provides a means for manipulating memory.
Server Provides a means for starting and stopping the server.
Service Provides a means for identifying services.

Storage group

Provides a means for manipulating storage groups.

Tries Provides a means for manipulating tries.
User ID Provides a means for mapping user IDs.
Worker Provides a means for connecting to a worker machine.

Programmers should be aware of the these restrictions regarding the use of these

APIs:

e RSKMAIN can call only ssServiceBind and ssServerRun.

e ssServiceBind can be called only by RSKMAIN and only before ssServerRun.

e ssServerRun can be called only by RSKMAIN and only once.

Note: Failure to adhere to these restrictions could cause unpredictable results.

© Copyright IBM Corp. 1999, 2001

219

ssAnchorGet

ssAnchorGet — Get Anchor Value

ssAnchorGet

retcode
reascode
anchor
monbufptr
monbufsize

Purpose

Operands

Usage Notes

Retrieves the value of the application-wide anchor word and the address and size
of the application monitor data area.

ssAnchorGet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAnchorGet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAnchorGet.

anchor
(output,INT,4) is a signed four-byte binary output variable to hold the returned
anchor value.

monbufptr
(output,POINTER,4) is a signed four-byte binary output variable to hold the
address of the application monitor buffer.

monbufsize
(output,INT,4) is a signed four-byte binary output variable to hold the size of the
application monitor buffer.

1. If the application-wide anchor word has not yet been set, this routine returns
zero as the value of the anchor word.

2. The value returned in monbufsize is the value of the MON_USER_SIZE
configuration variable.

220 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAnchorGet

Messages and Return Codes

Return Code Reason Code Meaning
SS_anc_rc_success SS_anc_re_success ssAnchorGet completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMANC MACRO
PL/X SSPLXANC COPY

Chapter 15. Function Descriptions 221

ssAnchorSet

ssAnchorSet — Set Anchor Value

ssAnchorSet
retcode
reascode
anchor
Pu rpose
Sets the value of the application-wide anchor word.
Operands

Usage Notes

ssAnchorSet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAnchorSet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAnchorSet.

anchor
(input,INT,4) is a signed four-byte binary input variable holding the new anchor
value.

None

Messages and Return Codes

Return Code
SS_anc_rc_success

Reason Code Meaning
SS_anc_re_success ssAnchorSet completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMANC MACRO
PL/X SSPLXANC COPY

222 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAuthCreateClass

ssAuthCreateClass — Create an Object Class

ssAuthCreateClass

retcode
reascode
class_id
operation_count
operation_array

Purpose

Operands

Usage Note

Creates a class in the authorization rule base.

ssAuthCreateClass
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthCreateClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthCreateClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the new class.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
operations defined on the class.

operation_array
(input,CHAR,4*operation_count) is an array of character strings holding the
operations defined on the class.

For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

Return Code
SS_aut_rc_success
SS_aut_rc_error
SS_aut_rc_error
SS_aut_rc_error
SS_aut_rc_error
SS_aut_rc_error
SS_aut_rc_error
Sss_aut_rc_error

Reason Code Meaning

SS_aut_re_success ssAuthCreateClass completed successfully
ss_aut_re_bad_count operation_count out of range
ss_aut_re_out_of_storage Not enough storage available
ss_aut_re_exists Class already exists

ss_aut_re_mag_fail Mutex acquisition failed
ss_aut_re_cvw_fail Condition variable wait failed
ss_aut_re_cvs_fall Condition variable signal failed
ss_aut_re_mr_fail Mutex release failed

Chapter 15. Function Descriptions 223

ssAuthCreateClass

Return Code Reason Code Meaning

SS_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

SS_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

SS_aut_rc_error Ss_aut_re_prev_io_error API disabled due to I/O error on previous call

SS_aut_rc_error SS_aut_re_prev_sync_error API disabled due to synchronization error on
previous call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

224 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAuthCreateObject

ssAuthCreateObject — Create an Object

ssAuthCreateObject
retcode
reascode
object_name
object_name_length
class_id
Purpose

Operands

Usage Note

Creates an object in the authorization rule base, assigning the object to the
specified class.

ssAuthCreateObject
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthCreateObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthCreateObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the
object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
object_name.

class_id
(input,INT,4) is a signed four-byte binary input variable holding the identifier of
the class to which the object belongs.

For more information on the naming conventions and other limits for the
authorization API, see“Naming Conventions and Other Limits” on page 42 .

Messages and Return Codes

Return Code
SS_aut_rc_success
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

Reason Code Meaning

SS_aut_re_success ssAuthCreateObject completed successfully
ss_aut_re_bad_obj_length object_name_length out of range
ss_aut_re_out_of storage Not enough storage available
ss_aut_re_no_class Class does not exist

ss_aut_re_exists Object already exists

ss_aut_re_mag_fail Mutex acquisition failed

Chapter 15. Function Descriptions 225

ssAuthCreateObject

Return Code Reason Code Meaning

SS_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

SS_aut_rc_error ss_aut_re_cvs_fall Condition variable signal failed

SS_aut_rc_error ss_aut_re_mr_fail Mutex release failed

SS_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

SS_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

Sss_aut_rc_error Ss_aut_re_prev_io_error API disabled due to I/O error on previous call

SS_aut_rc_error SS_aut_re_prev_sync_error API disabled due to synchronization error on
previous call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

226 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAuthDeleteClass

ssAuthDeleteClass — Delete a Class

ssAuthDeleteClass

retcode
reascode
class_id
option_count
option_array

Purpose

Operands

Usage Notes

Deletes the objects in a class, and optionally deletes the class.

ssAuthDeleteClass
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthDeleteClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthDeleteClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the class to be
deleted.

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
options in option_array.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables
holding the deletion options.

1. These options are recognized:

Ss_aut_objects_only Delete only the class's objects
ss_aut_objects_and_class Delete the class and the class's objects (default)

2. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Chapter 15. Function Descriptions 227

ssAuthDeleteClass

Messages and Return Codes

Return Code Reason Code
SS_aut_rc_success SS_aut_re_success
SS_aut_rc_error ss_aut_re_bad_count
ss_aut_rc_error ss_aut_re_bad_option
ss_aut_rc_error ss_aut_re_no_class
SS_aut_rc_error ss_aut_re_mag_fail
SS_aut_rc_error ss_aut_re_cvw_fail
SS_aut_rc_error ss_aut re_cvs_fail
SS_aut_rc_error ss_aut_re_mr_fail
SS_aut_rc_error ss_aut _re_read_fail
SS_aut_rc_error ss_aut_re_write_falil
ss_aut_rc_error Ss_aut_re_prev_io_error
ss_aut_rc_error Ss_aut_re_prev_sync_error

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

228 z/VM V3R1.0 RSK Programmer's Guide and Reference

Meaning

ssAuthDeleteClass completed successfully
option_count is out of range

At least one element of option_array is
unrecognized

Class does not exist

Mutex acquisition failed

Condition variable wait failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call
API disabled due to synchronization error on
previous call

ssAuthDeleteObject

ssAuthDeleteObject — Delete an Object

ssAuthDeleteObject

retcode

reascode
object_name
object_name_length
option_count
option_array

Purpose

Operands

Usage Notes

Deletes the rules associated with an object, and optionally deletes the object.

ssAuthDeleteObject
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthDeleteObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthDeleteObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the
object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
object_name

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
options in option_array.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables
holding the options to be applied to the deletion.

1. These deletion options are recognized:

ss_aut_rules_only Delete only the object's rules
ss_aut_rules_and_object Delete the object and all its rules (default)

2. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Chapter 15. Function Descriptions 229

ssAuthDeleteObject

Messages and Return Codes

Return Code

SS_aut_rc_success

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

Reason Code
SS_aut_re_success
ss_aut_re_bad_obj_length
ss_aut_re_bad_count
ss_aut_re_bad_option
Ss_aut_re_no_object
ss_aut_re_mag_fail
ss_aut_re_cvw_fail

ss_aut re_cvs_fail
ss_aut_re_mr_fail

ss_aut _re_read_fail
ss_aut_re_write_falil
Ss_aut_re_prev_io_error
Ss_aut_re_prev_sync_error

Meaning

ssAuthDeleteObject completed successfully
object_name_length out of range
option_count is out of range

Unrecognized option in option_array

Object does not exist

Mutex acquisition failed

Condition variable wait failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call
API disabled due to synchronization error on
previous call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

230 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAuthDeleteUser

ssAuthDeleteUser — Delete a User

ssAuthDeleteUser

retcode

reascode
user_name
user_name_length
class_name
option_count
option_array

Purpose

Operands

Deletes rules associated with a given user.

ssAuthDeleteUser
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthDeleteUser.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthDeleteUser.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the
user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
user_name

class_name
(input,CHAR,8) is the name of the class from which rules should be deleted.

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
deletion options specified.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables
holding the deletion options.

Chapter 15. Function Descriptions 231

ssAuthDeleteUser

Usage Notes

1. If no deletion options are specified, or if option ss_aut_all_classes is specified,
then every rule applicable to the named user is deleted.

2. If ss_aut_specific_class is specified in the options array, then the only rules
deleted are those that both apply to objects belonging to class class_name and
mention the named user.

3. To adjust a given user's rules for a specific object, use routine
ssAuthPermitUser.

4. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

Return Code

Ss_aut_rc_success

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

Reason Code Meaning
SS_aut_re_success ssAuthDeleteUser completed successfully
ss_aut_re_bad_user_length user_name_length out of range
ss_aut_re_bad_count option_count out of range
ss_aut_re_bad_option Unrecognized option in option_array
SsSs_aut_re_no_user No rules exist for user_name
ss_aut_re_mag_fail Mutex acquisition failed
ss_aut_re_cvw_fail Condition variable wait failed
ss_aut_re_cvs_fail Condition variable signal failed
ss_aut_re_mr_fail Mutex release failed
ss_aut_re_read_fail Unable to read authorization files
ss_aut_re_write_fail Unable to write authorization files
Ss_aut_re_prev_io_error API disabled due to I/O error on previous call
SS_aut_re_prev_sync_error API disabled due to synchronization error on
previous call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

232 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAuthListClasses

ssAuthListClasses — List Classes

ssAuthListClasses

retcode

reascode
match_key
match_key_length
classes_expected
class_huffer
classes_returned

Purpose

Operands

Returns a list of classes.

ssAuthListClasses
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthListClasses.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthListClasses.

match_key
(input,CHAR,match_key_length) is an input character string holding the match
key.

match_key length
(input,INT,4) is a signed four-byte binary input variable holding the length of the
match key.

classes_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of
eight-byte class names that will fit in class_buffer.

class_buffer
(output,CHAR,140*classes_expected) is an output buffer into which the list of
classes and their defined operations is to be placed.

classes_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of
classes defined.

Chapter 15. Function Descriptions 233

ssAuthListClasses

Usage Notes

1. ssAuthListClasses returns a list of the classes whose names match the match
key specified by the caller. The operations defined on those classes are also

returned.

2. The key expressed in match_key is expressed according to the CMS
Application Multitasking syntax for IPC and event match keys.

3. Each class returned consumes 140 bytes in the output buffer, as follows:

Offset.Length
0.8

8.4

12.128

Class name
Number of operations
Operations (4 bytes each)

4. If the actual number of classes defined is greater than classes_expected, then
the actual number of classes defined is returned in classes_returned, as many
class names as will fit are filled into the output buffer, and a warning return and

reason code are produced.

5. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

Return Code Reason Code
SS_aut_rc_success SS_aut_re_success
SS_aut_rc_error ss_aut_re_bad_count
Ss_aut_rc_warning ss_aut_re_too_many
Ss_aut_rc_error ss_aut_re_mag_fail
Ss_aut_rc_error ss_aut_re_cvs_fail
Ss_aut_rc_error ss_aut_re_mr_fail
Ss_aut_rc_error ss_aut_re_read_fail
Ss_aut_rc_error Ss_aut_re_prev_io_error
Ss_aut_rc_error SS_aut_re_prev_sync_error

Programming Language Bindings
Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

234 z/VM V3R1.0 RSK Programmer's Guide and Reference

Meaning

ssAuthListClasses completed successfully
classes_expected is out of range

Some class names did not fit into the output
buffer

Mutex acquisition failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

API disabled due to I/O error on previous call
API disabled due to synchronization error on
previous call

ssAuthListObjects

ssAuthListObjects — List Objects in Class

ssAuthListObjects

retcode

reascode

class_id

match_key

match_key length
object_names_expected
object_name_buffer_pointers
object_name_buffer_sizes
object_name_lengths
object_names_returned

Purpose

Operands

Generates a list of the names of the objects belonging to a given class.

ssAuthListObjects
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthListObjects.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthListObjects.

class_id
(input,CHAR,8) is a character string holding the class to be interrogated.

match_key
(input,CHAR,match_key_length) is an input character string holding the match
key.

match_key length
(input,INT,4) is a signed four-byte binary input variable holding the length of the
match key.

object_names_expected
(input,INT,4) is a signed four-byte binary input variable holding the nhumber of
elements in the object_name_buffer_pointers, object_name_buffer_sizes, and
object_name_lengths arrays.

object_name_buffer_pointers
(input,POINTER,4*object_names_expected) is an array of pointers to buffers to
hold the returned object names.

Chapter 15. Function Descriptions 235

ssAuthListObjects

Usage Notes

object_name_buffer_sizes

(input,INT,4*object_names_expected) is an array of signed four-byte binary
input variables holding the sizes of the buffers pointed to by the elements of

object_name_buffer_pointers.

object_name_lengths

(output,INT,4*object_names_expected) is an array of signed four-byte binary
output variables to hold the lengths of the returned object names.

object_names_returned

(output,INT,4) is a signed four-byte binary output variable to hold the actual
number of object names matching the supplied key.

matching key match_key.

. This function returns the names of the objects belonging to class class_id and

. The key expressed in match_key is expressed according to the CMS

Application Multitasking syntax for IPC and event match keys.

. If the actual number of objects selected by match_key is greater than

object_names_expected, then the actual number of objects selected is returned
in object_names_returned, as many object names as will fit are filled into the
output arrays, and a warning return and reason code are produced.

. If an object name does not fit into the buffer described by its pair of elements

from the object_name_buffer_pointers and object_name_buffer_sizes arrays,
then the actual length of the object name is returned in the corresponding
element of the object_name_lengths, as much of the object name as will fit is
returned in the object name buffer, and a warning return and reason code are

produced.

. If both of the above-mentioned warning conditions are encountered, the reason

code will indicate that more object names were available than would fit in the
output arrays (in other words, the truncated object hame condition will not be

visible through reason code).

. For more information on the naming conventions and other limits for the

authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

Return Code
SS_aut_rc_success
Ss_aut_rc_error
Ss_aut_rc_error
Ss_aut_rc_warning

Ss_aut_rc_warning

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

Reason Code
SS_aut_re_success
ss_aut_re_bad_count
ss_aut_re_no_class
ss_aut_re_too_many

Ss_aut_re_trunc

ss_aut_re_mag_fail
ss_aut_re_cvs_fail
ss_aut_re_mr_fail
ss_aut_re_read_fail
Ss_aut_re_prev_io_error
SS_aut_re_prev_sync_error

236 z/VM V3R1.0 RSK Programmer's Guide and Reference

Meaning

ssAuthListObjects completed successfully
object_names_expected out of range

Class does not exist

More object names were available than caller
expected

One or more returned object names was
truncated

Mutex acquisition failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

API disabled due to I/O error on previous call
API disabled due to synchronization error on
previous call

ssAuthListObjects

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

Chapter 15. Function Descriptions 237

ssAuthModifyClass

ssAuthModifyClass — Modify an Object Class

ssAuthModifyClass
retcode
reascode
class_id
operation_count
operation_array

Purpose
Adds operations to an existing object class.

Operands

ssAuthModifyClass
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthModifyClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthModifyClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the class being
modified.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
operations to be added to the class.

operation_array
(input,CHAR,4*operation_count) is an array of character strings holding the
operations to be added to the class.

Usage Notes

1. Use this function when it becomes necessary to define one or more new
operations on a class (and therefore on all objects belonging to it).

2. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

Return Code Reason Code Meaning

SsS_aut_rc_success SS_aut_re_success ssAuthModifyClass completed successfully
Sss_aut_rc_error ss_aut_re_bad_count operation_count out of range
ss_aut_rc_error ss_aut_re_no_class Class does not exist

ss_aut_rc_error ss_aut_re_too_many Operation limit on class would be exceeded

238 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAuthModifyClass

Return Code Reason Code Meaning

SS_aut_rc_error ss_aut_re_mag_fail Mutex acquisition failed

SS_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

SS_aut_rc_error ss_aut_re_cvs_fall Condition variable signal failed

SS_aut_rc_error ss_aut_re_mr_fail Mutex release failed

SS_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

Ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

SS_aut_rc_error Ss_aut_re_prev_io_error API disabled due to I/O error on previous call

Sss_aut_rc_error SS_aut_re_prev_sync_error API disabled due to synchronization error on
previous call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

Chapter 15. Function Descriptions 239

ssAuthPermitUser

ssAuthPermitUser — Permit a User

ssAuthPermitUser

retcode

reascode
user_name
user_name_length
object_name
object_name_length
use_arrays
operation_count
operation_array
operation_qualifiers
update_results

Purpose

Operands

240

Installs, modifies, or deletes a rule in the rule base.

ssAuthPermitUser
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthPermitUser.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthPermitUser.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the
user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
user_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the
object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
object_name.

use_arrays
(input,INT,4) is a signed four-byte binary input variable holding a flag indicating
how the operation arrays should be applied to the rule.

z/VM V3R1.0 RSK Programmer's Guide and Reference

Usage Notes

ssAuthPermitUser

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the length of the
operation_array, operation_qualifiers and update_results arrays.

operation_array
(input, CHAR,4*operation_count) is an array of character strings holding the
operations being edited.

operation_qualifiers
(input,INT,4*operation_count) is an array of signed four-byte binary input
variables holding the interpretation rules for the corresponding elements of
operation_array.

update_results
(output,INT,4*operation_count) is an array of signed four-byte binary output
variables to hold the results of applying the changes requested in the
corresponding elements of the operation_array and operation_qualifier arrays.

1. These values are recognized in use_arrays:

ss_aut_add_all First add all operations defined on the object to the
user's rule for the object, then use the operation
arrays to further update the user's rule

ss_aut_delete_all First completely delete the current rule, then use the
operation arrays to construct a new rule

SS_aut_use_arrays Just update the current rule, using the operation
arrays

2. These items are recognized in operation_qualifiers:

ss_aut_add_operation Add the corresponding operation in operation_array
SS_aut_remove_operation Remove the corresponding operation in
operation_array

3. These items are filled into update_results:

ss_aut_op_not_defined Operation is not defined on class to which object

belongs
ss_aut_op_permitted Operation is now permitted
ss_aut_op_not_permitted Operation is now not permitted
Ss_aut_no_change Requested update did not change user's rule for
object

4. To completely remove a rule, use ss_aut_delete_all and operation_count=0.

5. To grant “blanket” access to an object, use ss_aut_add_all and
operation_count=0.

6. To grant all authorities except ones you explicitly wish to exclude, use
ss_aut_add_all followed by an operation array naming the authorities you wish
to exclude, each entry being qualified by ss_aut_remove_operation.

7. To “edit” an existing rule, use ss_aut_use_arrays and operation arrays
containing the changes you wish to apply.

8. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Chapter 15. Function Descriptions 241

ssAuthPermitUser

Messages and Return Codes

Reason Code
SS_aut_re_success
ss_aut_re_bad_op

Return Code
SS_aut_rc_success
ss_aut_rc_warning

Meaning
ssAuthPermitUser completed successfully
One or more of the elements of operation_array

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_re_bad_user_length
ss_aut_re_bad_obj_length
ss_aut re_bad_use
ss_aut_re_bad_count
ss_aut_re_bad_qual

ss_aut_re_out_of_storage
Ss_aut_re_no_object
ss_aut_re_mag_fail
ss_aut_re_cvw_fail
ss_aut_re_cvs_fall
ss_aut_re_mr_fail
ss_aut_re_read_fail
ss_aut_re_write_fail
Ss_aut_re_prev_io_error
SS_aut_re_prev_sync_error

Programming Language Bindings

is not defined on this object's class
user_name_length out of range
object_name_length out of range
use_arrays contains an unrecognized value
operation_count out of range

One or more of the elements of
operation_qualifiers is unrecognized

Not enough storage available

Object does not exist

Mutex acquisition failed

Condition variable wait failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call
API disabled due to synchronization error on
previous call

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

242 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAuthQueryObject

ssAuthQueryObject — Query an Object

ssAuthQueryObject

retcode

reascode
object_name
object_name_length
class_id
userids_expected
userid_buffer_pointers
userid_buffer_sizes
userid_lengths
userids_returned

Purpose

Operands

Queries an object, returning the class to which it belongs and a list of the user IDs
for which a rule exists for the object.

ssAuthQueryObject
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthQueryObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthQueryObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the
object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
object_name.

class_id
(output,CHAR,8) is a character string to hold the class to which the object
belongs.

userids_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of
elements in the userid_buffer_pointers, userid_buffer_sizes, and userid_lengths
arrays.

userid_buffer_pointers
(input,POINTER,4*userids_expected) is an array of pointers to buffers to hold
the returned user IDs.

Chapter 15. Function Descriptions 243

ssAuthQueryObject

Usage Notes

userid_buffer_sizes

(input,INT,4*userids_expected) is an array of signed four-byte binary input
variables holding the sizes of the buffers pointed to by the elements of

userid_buffer_pointers.

userid_lengths

(output,INT,4*userids_expected) is an array of signed four-byte binary output
variables to hold the lengths of the returned user IDs.

userids_returned

(output,INT,4) is a signed four-byte binary output variable to hold the actual
number of user IDs for which a rule exists for the object.

. If the actual number of user IDs for which a rule exists is greater than

userids_expected, then the actual number of user IDs is returned in
userids_returned, as many user IDs as will fit are filled into the output arrays,
and a warning return and reason code are produced.

. If a user ID does not fit into the buffer described by the pair of elements from

the userid_buffer_pointers and userid_buffer_sizes arrays, then the actual
length of the user ID is returned in the corresponding element of the
userid_lengths arrays, as much of the user ID as will fit is returned in the buffer,
and a warning return and reason code are produced.

. If both of the above-mentioned warning conditions are encountered, the reason

code will indicate that more user IDs were available than would fit in the output
arrays (in other words, the truncated user ID condition will not be visible

through reason code).

. To determine the specific access rights afforded to one of the returned user
IDs, use ssAuthQueryRule.

. For more information on the naming conventions and other limits for the

authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

Return Code
SS_aut_rc_success
Ss_aut_rc_error
ss_aut_rc_error
Ss_aut_rc_error
ss_aut_rc_warning
ss_aut_rc_warning
ss_aut_rc_error
Ss_aut_rc_error
Ss_aut_rc_error
Ss_aut_rc_error
Ss_aut_rc_error
Ss_aut_rc_error

Reason Code
SS_aut_re_success
ss_aut_re_bad_obj_length
ss_aut_re_bad_count
Ss_aut_re_no_object
ss_aut_re_too_many
ss_aut_re_trunc
ss_aut_re_mag_fail
ss_aut_re_cvs_fail
ss_aut_re_mr_fail
ss_aut_re_read_fail
Ss_aut_re_prev_io_error
SS_aut_re_prev_sync_error

244 z/vM V3R1.0 RSK Programmer's Guide and Reference

Meaning

ssAuthQueryObject completed successfully
object_name_length out of range
userids_expected out of range

Object does not exist

Some user IDs did not fit into the output arrays
One or more returned user IDs was truncated
Mutex acquisition failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

API disabled due to I/O error on previous call
API disabled due to synchronization error on
previous call

ssAuthQueryObject

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

Chapter 15. Function Descriptions 245

ssAuthQueryRule

ssAuthQueryRule — Query a Rule

ssAuthQueryRule

retcode

reascode
user_name
user_name_length
object_name
object_name_length
operations_expected
operation_array
operations_returned

Purpose

Operands

Queries the operations a user can perform against an object.

ssAuthQueryRule
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthQueryRule.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthQueryRule.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the
user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
user_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the
object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
object_name.

operations_expected
(input,INT,4) is a signed four-byte binary input variable holding the size of
operation_array.

operation_array
(output,CHAR,4*operations_expected) is an array of character strings to hold
the operations the user is permitted to perform.

246 z/VM V3R1.0 RSK Programmer's Guide and Reference

Usage Notes

operations_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of
operations filled into operation_array.

ssAuthQueryRule

1. If the actual number of operations permitted is greater than
operations_expected, then the actual number of operations permitted is
returned in operations_returned, as many operations as will fit are filled into
operation_array, and a warning return and reason code are produced.

2. If the named user is not permitted any operations against the named object,
then a successful return and reason code are generated and

operations_returned is set to zero.

3. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

Return Code
SSs_aut_rc_success
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_warning
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

Reason Code
SS_aut_re_success
ss_aut_re_bad_user_length
ss_aut_re_bad_obj_length
ss_aut_re_bad_count
ss_aut_re_no_object
ss_aut_re_too_many
ss_aut_re_mag_fail
ss_aut_re_cvs_fail
ss_aut_re_mr_falil
ss_aut_re_read_fail
Ss_aut_re_prev_io_error
SS_aut_re_prev_sync_error

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

Meaning

ssAuthQueryRule completed successfully
user_name_length out of range
object_name_length out of range
operations_expected out of range

Object does not exist

Some operations did not fit into operation_array
Mutex acquisition failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

API disabled due to I/O error on previous call
API disabled due to synchronization error on
previous call

Chapter 15. Function Descriptions 247

ssAuthReload

ssAuthReload — Reload Authorization Data

ssAuthReload

retcode
reascode

Purpose

Operands

Usage Note

Resets the internal authorization engine.

ssAuthReload
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthReload.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthReload.

This function is intended for use when an I/O error of some kind shuts off the
authorization API (causes ss_aut_re_prev_io_error to be returned). It performs
these functions:

* Closes all authorization data files, ignoring close errors.

Note: For the SFS, the work unit was rolled back at the time the error was
detected. For other repositories, the log file and update algorithms provide
appropriate recovery mechanisms.

e Returns its CMS work unit ID, if applicable.
* Flushes all caches.
e Gets a new CMS work unit ID, if applicable.

¢ Reopens the data files.

e |f applicable, attempts to recover the authorization database (processes log file

and realigns the two copies).
¢ Reloads the authorization index into storage.

If all these operations were successful, the authorization API is again available for
use.

248 z/VM V3R1.0 RSK Programmer's Guide and Reference

Messages and Return Codes

Return Code Reason Code
SS_aut_rc_success SS_aut_re_success
SS_aut_rc_error ss_aut_re_mag_fail
ss_aut_rc_error ss_aut_re_cvw_fail
Ss_aut_rc_error ss_aut re_cvs_fail
Ss_aut_rc_error ss_aut_re_mr_fail
SS_aut_rc_error ss_aut_re_gwu_fail
SS_aut_rc_error Ss_aut_re_open_fail
SS_aut_rc_error ss_aut _re_read_fail
SS_aut_rc_error ss_aut_re_write_falil
ss_aut_rc_error Ss_aut_re_prev_sync_error

Programming Language Bindings
Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

ssAuthReload

Meaning

ssAuthReload completed successfully
Mutex acquisition failed

Condition variable wait failed

Condition variable signal failed

Mutex release failed

DMSGETWU (Get Work Unit ID) failed
Unable to open authorization files
Unable to read authorization files
Unable to write authorization files

API disabled due to synchronization error on
previous call

Chapter 15. Function Descriptions 249

ssAuthTestOperations

ssAuthTestOperations — Test Operations

ssAuthTestOperations

retcode

reascode
user_name
user_name_length
object_name
object_name_length
operation_count
desired_operations
test_results

Purpose

Operands

Tests a given user's rights to perform a set of actions against a given object.

ssAuthTestOperations
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssAuthTestOperations.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssAuthTestOperations.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the
user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
us/r_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the
object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
object_name.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the length of the
desired_operations and test_results arrays.

desired_operations
(input,CHAR,4*operation_count) is an array of character strings holding the
operations to be tested.

250 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssAuthTestOperations

test_results
(output,INT,4*operation_count) is an array of signed four-byte binary output
variables to hold the results of the tests.

Usage Notes
1. On successful completion, each element of test_results will contain one of
these values:

ss_aut_op_permitted Operation is permitted
ss_aut_op_not_permitted Operation is not permitted
ss_aut_op_not_defined Operation is not defined

2. For more information on the naming conventions and other limits for the
authorization API, see “Naming Conventions and Other Limits” on page 42.

Messages and Return Codes

Return Code Reason Code Meaning

SS_aut_rc_success SS_aut_re_success ssAuthTestOperations completed successfully

SS_aut_rc_error ss_aut_re_bad_user_length user_name_length out of range

SS_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

SS_aut_rc_error ss_aut_re_bad_count operation_count out of range

SS_aut_rc_error Ss_aut_re_no_object Object does not exist

SS_aut_rc_error ss_aut_re_mag_fail Mutex acquisition failed

SS_aut_rc_error ss_aut_re_cvs_fall Condition variable signal failed

SS_aut_rc_error ss_aut_re_mr_fail Mutex release failed

SS_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

SS_aut_rc_error Ss_aut_re_prev_io_error API disabled due to I/O error on previous call

SS_aut_rc_error SS_aut_re_prev_sync_error API disabled due to synchronization error on
previous call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

Chapter 15. Function Descriptions 251

ssCacheCreate

ssCacheCreate — Create Cache

ssCacheCreate
retcode
reascode
cache_name
cache_size
cache_alet
Purpose
Creates a file cache, using a VM Data Space.
Operands

Usage Notes

ssCacheCreate
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssCacheCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssCacheCreate.

cache_name
(input,CHAR,8) is a character string holding the name of the new file cache.

cache_size
(input,INT,4) is a signed four-byte binary input variable holding the size of the
new file cache.

cache_ALET
(output,INT,4) is a signed four-byte binary output variable to hold the returned
ALET.

1. The cache name is used directly in a call to ssMemoryCreateDS and therefore
must not conflict with any other subpool names.

2. The cache size is to be given in pages. It must be greater than 0 and less
than or equal to 524288. The actual size of the created cache is rounded up to
the next 16-page boundary.

Messages and Return Codes

Return Code
ss_fil_rc_success
ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error

Reason Code Meaning

ss_fil_re_success ssCacheCreate completed successfully
ss_fil_re_bad_size cache_size is out of range
ss_fil_re_cache_exists Cache already exists

ss_fil_re_out_of storage Out of storage

ss_fil_re_dscr_fail Creation of data space failed

252 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssCacheCreate

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

Chapter 15. Function Descriptions 253

ssCacheDelete

ssCacheDelete — Delete Cache

ssCacheDelete
retcode
reascode
cache_name

Pu rpose
Deletes a file cache.

Operands
ssCacheDelete
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return

code from ssCacheDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason

code from ssCacheDelete.

cache_name
(input,CHAR,8) is a character string holding the name of the file cache to be
deleted.

Usage Notes
1. Once deletion starts, the server kernel will not honor any more calls to
ssCacheFileOpen for this cache.

2. The deletion does not complete until the last open file in this cache is closed.

Messages and Return Codes

Return Code Reason Code Meaning
ss_fil_rc_success ss_fil_re_success ssCacheDelete completed successfully
ss_fil_rc_error ss_fil_re_cache_not_found Cache not found

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

254 z/vM V3R1.0 RSK Programmer's Guide and Reference

ssCacheFileClose

ssCacheFileClose — Close Cached File

ssCacheFileClose

retcode
reascode
cache_name
file_token

Purpose

Operands

Usage Note

Close a cached file.

ssCacheFileClose
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssCacheFileClose.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssCacheFileClose.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the
file being closed is located.

file_token
(input,CHAR,8) is a character string holding the token of the file being closed.

If the file being closed was previously marked as stale, it is dropped from the
cache.

Messages and Return Codes

Return Code
ss_fil_rc_success
ss_fil_rc_error
ss_fil_rc_error

Reason Code Meaning

ss_fil_re_success ssCacheFileClose completed successfully
ss_fil_re_cache_not_found Cache does not exist
ss_fil_re_bad_token File token is bad

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

Chapter 15. Function Descriptions 255

ssCacheFileOpen

ssCacheFileOpen — Open Cached File

ssCacheFileOpen
retcode
reascode
cache_name
file_name
file_name_length
ESM_data
ESM_data_length
flag_count
flag_names
flag_values
file_token
cache_ALET
file_address
file_size
file_stamp

Pu rpose
Makes a file ready for reading from a cache, loading it from minidisk, SFS, or BFS
if necessary.

Operands

ssCacheFileOpen
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssCacheFiTeOpen.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssCacheFiTleOpen.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the
file is to be placed.

file_name
(input,CHARfile_name_length) is a character string holding the name of the file
to be cached.

file_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
file_name.

ESM_data
(input,CHAR,ESM_data_length) is a character string holding ESM data to be
passed to DMSOPEN.

256 z/VM V3R1.0 RSK Programmer's Guide and Reference

Usage Notes

ssCacheFileOpen

ESM_data_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
ESM_data.

flag_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
elements in each of the the flag_names and flag_values arrays.

flag_names
(input,INT,4*flag_count) is an array of signed four-byte binary input variables
holding flag names.

flag_values
(input,INT,4*flag_count) is an array of signed four-byte binary input variables
holding flag values.

file_token
(output,CHAR,8) is a character string to hold the returned file token.

cache_ALET
(output,INT,4) is a signed four-byte binary output variable to hold the ALET of
the cache data space.

file_address
(output,POINTER,4) is a signed four-byte binary output variable to hold the
address of the file in the data space.

file_size
(output,INT,4) is a signed four-byte binary output variable to hold the size of the
cached file in bytes.

file_stamp
(output,CHAR,32) is a character string to hold the returned last update date
and time of the file.

1. Parameters file_name and file_name_length together describe a string which
will be passed unchanged to either CSL routine DMSOPEN or CSL routine BPX10PN
as the name of the file to be opened. The CSL routine the server kernel
chooses depends on the values you specify in the flag arrays. Be aware that
case is significant in file names.

2. The server kernel will pass parameters ESM_data and ESM_data_length
unchanged to DMSOPEN if it ends up calling DMSOPEN to find the file. The server
kernel will ignore the ESM data if it ends up calling BPX10PN.

3. Parameter arrays flag_names and flag_values together contain integers
specifying various controls on how the file is to be cached. These integers and
their meanings are described in Table 45 on page 258.

Chapter 15. Function Descriptions 257

ssCacheFileOpen

Table 45 (Page 1 of 2). Flags for ssCacheFileOpen

to open the file.

ss_cac_ofv_no for
DMSOPEN.

Flag Name Function Acceptable Default Value
Values
ss_cac_ofn_bfs Corresponding value Specify If you do not mention this flag in your flag
tells the server kernel ss_cac_ofv_yes for arrays, the server kernel will try to guess
whether to use BPX10PN BPX10PN or whether to use DMSOPEN or BPX10PN based

on the composition of the filename string
you supply. If the filename you supply
contains a blank (X'40'), the server kernel
will try DMSOPEN. If it contains no blanks,
the server kernel will try BPX10PN.

ss_cac_ofn_xlate

Corresponding value
nominates a translation
table previously
identified through
ssCacheX1TabSet.

Any table ID, or zero to
bypass translations.

Zero

ss_cac_ofn_preserve_dolr

Corresponding value
specifies whether the
file's date of last
reference should be
preserved (that is, not
updated). Ignored if
the server kernel ends
up calling BPX10PN.

Specify
ss_cac_ofv_yes or
ss_cac_ofv_no.

ss_cac_ofv_no

ss_cac_ofn_recmethod_fs

Corresponding value
describes how the
server kernel should
expect the records to
be delimited in the file
it is reading from disk.

o X"OOXXXXXX" -
The file's records
are delimited
according to the
structure recorded
by the CMS file
system (F1 for
BFS files).

e X'Olnnssss' -
The file's records
are delimited by an
nn-byte suffix
appearing in the
file's data after
each record. Set
nn equal to X'00",
X'01', or X'02'.
The suffix bytes to
be used are ssss.
If nnis X'01' the
second suffix byte
is ignored.

o X'02nnxxxx" -
The file's records
are delimited by an
nn-byte length
prefix appearing in
the file's data
before each
record. The length
prefix does not
include the length
of the prefix itself.
Set nn equal to
X'02' or X'04'.

X'00000000"'

258 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssCacheFileOpen

Table 45 (Page 2 of 2). Flags for ssCacheFileOpen

Flag Name Function Acceptable Default Value
Values
ss_cac_ofn_recmethod_cache Corresponding value e X'Olnnssss' - Put X'01000000'
describes how the an nn-byte suffix
server kernel should on each record.
delimit records in the Set nn equal to
cached file. X'00', X'01', or

X'02'. The suffix
bytes to be used
are ssss. If nnis
X'01' the second
suffix byte is
ignored.

o X'02nnxxxx" -
Prefix each record
with a nn-byte
length field. The
length prefix does
not include the
length of the prefix
itself. Set nn equal
to X'02' or X'04'.

10.

. Use the value supplied in output file_token in calls to ssCacheFileRead and

ssCacheFileClose.

. If the server kernel was able to load the file contiguously in data space storage,

then it returns the cache's ALET in cache_ALET and the address of the file
buffer in file_address. This lets the server know that it can use AR mode to
access the file data directly if it chooses. If the file was not loaded
contiguously, cache_ALET and file_address are returned as zero.

. The number of bytes cached -- that is, the size of the transformed file, in bytes

-- is returned in file_size.

. If the data space is too full to contain the file, the server kernel throws away

cached files in LRU fashion, skipping those files that are still open, until enough
storage is freed to hold the new file. If the server kernel removes all files
eligible for removal but the new file still will not fit, an error is returned.

. If there are stale versions of the new file still in the cache, and those stale

versions are no longer open, they are discarded prior to loading the new file.
Stale, still-open versions are marked as stale and thrown out when they are
finally closed.

. Afile's date of last reference is never updated on a cache hit, no matter what

the caller requested.

Cache contents are indexed by file name as passed by the caller. Depending
on accessed file modes, default filepools, SFS aliasing, and default filespaces,
several different file names might actually refer to the same physical file; the
server kernel cannot discern that these names all refer to the same file. Callers
need to be aware of this phenomenon and might need to perform some file
name resolution prior to calling ssCacheFileOpen in order to keep unnecessary
duplicates out of a file cache.

Similarly, if the server is referring to files using file mode letters and is switching
the accessed file mode set through the ACCESS and RELEASE commands,
the same name might refer to two different files at two different moments in
time. The cache will be unharmed by this as long as those two different files
have different update timestamps, but if two such files have the same update

Chapter 15. Function Descriptions 259

ssCacheFileOpen

11.

12.
13.

14.

timestamp the cache will fail to reload when a reload truly is required. The
server author is responsible for avoiding this situation.

Files with record formats other than V or F (as returned by DMSEXIST) cannot be
cached.

Files with names longer than 256 bytes cannot be cached.

If you requested suffixing or prefixing for ss_cac_ofn_recmethod _fs, the records
encountered in the file must all be less than or equal to 65,535 bytes in length.

On VM/ESA 2.3.0 and later, file_stamp is always returned in ISO format. On
earlier VM/ESA releases, if the cached file was loaded from SFS or minidisk
the stamp is returned in ISO format, but if the cached file was loaded from BFS
the first four bytes of the returned stamp are Posix time and the remainder of
the stamp is blank (X'40").

Messages and Return Codes

Reason Code
ss_fil_re_success

Return Code
ss_fil_rc_success

Meaning
ssCacheFileOpen completed successfully

ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error

Cache does not exist

Bad value in file_name_length
Bad value in flag_count

Bad value in ESM_data_length
Bad value in flag_names

Bad value in flag_values

Call to DMSEXIST failed

DMSOPEN could not find file
Record format is neither F nor V

ss_fil_re_cache_not_found
ss_fil_re_bad_length
ss_fil_re_bad_count
ss_fil_re_bad_esmdl
ss_fil_re_bad_fname
ss_fil_re_bad_fval
ss_fil_re_exist fail
ss_fil_re_file_not_found
ss_fil_re_bad_recfm

Programming Language Bindings

260

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

z/VM V3R1.0 RSK Programmer's Guide and Reference

ssCacheFileRead

ssCacheFileRead — Read Cached File

ssCacheFileRead

retcode
reascode
cache_name
file_token
byte offset
byte count
buffer

bytes read

Purpose

Operands

Reads data from a cached file.

ssCacheFileRead
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssCacheFiTleRead.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssCacheFileRead.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the
file is located.

file_token
(input,CHAR,8) is a character string holding the token of the file to be read.

byte offset
(input,INT,4) is the zero-origin offset to the first byte of the file to be read.

byte count
(input,INT,4) is the number of bytes to be read.

buffer
(output,CHAR,byte count) is a character string to hold the bytes read from the
file.

bytes returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of
bytes read from the file.

Chapter 15. Function Descriptions 261

ssCacheFileRead

Usage Notes

1. The server kernel supports multiple simultaneous read operations against a

given file.

2. If not enough bytes are available to satisfy the call, as many bytes as are
available are returned in the output buffer and success is returned.

3. If the supplied offset is less than zero or is past the end of the file, an error is

returned.

Messages and Return Codes

Return Code Reason Code
ss_fil_rc_success ss_fil_re_success
ss_fil_rc_error ss_fil_re_cache_not_found
ss_fil_rc_error ss_fil_re_bad_token
ss_fil_rc_error ss_fil_re_bad_offset
ss_fil_rc_error ss_fil_re_bad_length

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

262 z/VM V3R1.0 RSK Programmer's Guide and Reference

Meaning

ssCacheFileRead completed successfully
Cache does not exist

Bad file token

Bad file offset

Bad byte count

ssCacheQuery

ssCacheQuery — Query Cache

ssCacheQuery

retcode
reascode
cache_name
files_cached
cache_size
in_use
open_count
hit_count

Purpose

Operands

Returns basic statistics about a cache's operation.

ssCacheQuery
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssCacheQuery.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssCacheQuery.

cache_name
(input,CHAR,8) is a character string holding the name of the file cache to be
queried.

files_cached
(output,INT,4) is a signed four-byte binary output variable to hold the number of
files currently resident in the cache.

cache_size
(output,INT,4) is a signed four-byte binary output variable to hold the size of the
cache.

in_use
(output,INT,4) is a signed four-byte binary output variable to hold the amount of
cache space currently in use.

open_count
(output,INT,4) is a signed four-byte binary output variable to hold the number of
file opens processed through this cache.

hit_count
(output,INT,4) is a signed four-byte binary output variable to hold the number of
times a file open was satisfied without having to call CMS to read the file from
disk.

Chapter 15. Function Descriptions 263

ssCacheQuery

Usage Note

Parameters cache_size and in_use are returned in bytes.

Messages and Return Codes

Return Code Reason Code Meaning
ss_fil_rc_success ss_fil_re_success ssCacheQuery completed successfully
ss_fil_rc_error ss_fil_re_cache_not_found Cache not found

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

264 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssCacheX|TabSet

ssCacheXlTabSet — Set Translation Table

ssCacheXl|TabSet
retcode
reascode
table_id
table

Pu rpose
Sets translation table for use when reading files.

Operands

ssCacheXITabSet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssCacheX1TabSet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssCacheX1TabSet.

table id
(input,INT,4) is a signed four-byte binary input variable holding the identifier of
the new translation table.

table
(input,CHAR,256) is a character string holding the translation table itself.

Usage Notes
1. Parameter table_id can be any four-byte integer except zero.

2. If table_id was previously in use, the previous table is replaced and a warning
is returned.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheX1TabSet completed successfully
ss_fil_rc_warning ss_fil_re_table_replaced Table was replaced

ss_fil_rc_error ss_fil re_bad_table _id Table ID cannot be zero

ss_fil_rc_error ss_fil_re_out_of storage Out of storage

Chapter 15. Function Descriptions 265

ssCacheXITabSet

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

266 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssClientDataGet

ssClientDataGet — Get Client Data

ssClientDataGet
retcode
reascode
caller_type
C-block_address
get_method
buffer_alet
data_buffer
amount_wanted
amount_given
amount_remaining

Pu rpose
Obtains or discards data from client data buffers.

Operands
ssClientDataGet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssClientDataGet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssClientDataGet.

caller_type
(input,INT,4) is a signed four-byte binary input variable holding an indicator of
the kind of caller (instance or line driver).

C-block _address
(input,POINTER,4) is a signed four-byte binary input variable holding the
address of the C-block for the client in question.

get_method
(input,INT,4) is a signed four-byte binary input variable holding an indicator of
the kind of retrieval operation to be performed.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be
used when accessing data_buffer.

data_buffer
(input,CHAR,amount_wanted) is a character string into which the retrieved data
is to be placed.

Chapter 15. Function Descriptions 267

ssClientDataGet

amount_wanted
(input,INT,4) is a signed four-byte binary input variable holding the number of
bytes of data to be retrieved or discarded.

amount_given
(output,INT,4) is a signed four-byte binary output variable to hold the number of
bytes actually returned or discarded.

amount_remaining
(output,INT,4) is a signed four-byte binary output variable to hold the number of
bytes remaining in the client's buffers after the caller's operation completed.

Usage Notes
1. The caller_type should be set to one of these values:

ss_cli_iam_instance The caller is an instance thread.
ss_cli_iam_linedriver The caller is a line driver.

2. The get_method should be set to one of these values:

ss_cli_method_peek Fill the caller's buffer but do not dequeue and
discard it just yet from the reusable server kernel's
internal buffers.

ss_cli_method_read Fill the caller's buffer and dequeue and discard it
from the reusable server kernel's internal buffers.

ss_cli_method_discard Dequeue and discard the data from the reusable
server kernel's internal buffers but do not fill it into
the caller's buffer.

3. Setting amount_wanted to -1 means “perform this operation on all of the data
currently buffered.”

4. If the caller asks for more data than is currently buffered, all of the currently
available data is returned, amount_given is filled in appropriately, and no error
is returned.

5. If the line driver you are using is record-oriented, then the data stream you read
from the client will be organized into records, each record prefixed by a
four-byte length. For more information on the description of record-oriented line
drivers, see Table 8 on page 15. “Connectivity and Line Drivers.”

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataGet completed successfully
ss_cli_rc_error ss_cli_re_bad_iam caller_type contains unrecognized value

ss_cli_rc_error ss_cli_re_bad_method get_method contains unrecognized value
ss_cli_rc_error ss_cli_re_out_of_range amount_wanted contains illegal value

Programming Language Bindings

Language Language Binding File
Assembler SSASMCLI MACRO
PL/X SSPLXCLI COPY

268 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssClientDatalnit

ssClientDatalnit — Initialize Client Data Buffers

ssClientDatalnit
retcode
reascode
C-block_address
subpool_name

Pu rpose
Initializes client data buffer structures.

Operands

ssClientDatalnit
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssClientDatalnit.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssClientDatalnit.

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the
address of the C-block for the client in question.

subpool_name
(input, CHARACTER,8) is a character string holding the name of the subpool
from which these client buffers should be allocated.

Usage Notes

1. This routine is meant for use by a line driver that is preparing to handle a new
client. As part of initializing the C-block that describes the new client, the line
driver should call ssClientDatalnit to ensure that the structures relating to
buffering the client's data are initialized.

2. Subpool subpool_name must not be a subpool that refers to a VM Data Space.

Messages and Return Codes

Return Code Reason Code Meaning
ss_cli_rc_success ss_cli_re_success ssClientDatalnit completed successfully

Chapter 15. Function Descriptions 269

ssClientDatalnit

Programming Language Bindings

Language Language Binding File
Assembler SSASMCLI MACRO
PL/X SSPLXCLI COPY

270 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssClientDataPut

ssClientDataPut — Put Client Data

ssClientDataPut

retcode

reascode

caller_type
C-block_address
buffer_alet
data_buffer
amount_of_data
new_amount_buffered

Purpose

Operands

Writes data to client data buffers.

ssClientDataPut
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssClientDataPut.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssClientDataPut.

caller_type
(input,INT,4) is a signed four-byte binary input variable holding an indicator of
the kind of caller (instance or line driver).

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the
address of the C-block for the client in question.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be
used when accessing data_buffer.

data_buffer
(input,CHAR,amount_of data) is a character string containing the data to be
written.

amount_of data
(input,INT,4) is a signed four-byte binary input variable holding the length of
data_buffer.

new_amount_buffered
(output,INT,4) is a signed four-byte binary output variable to hold the new
amount of data in the client buffer.

Chapter 15. Function Descriptions 271

ssClientDataPut

Usage Notes

. caller_type should be set to one of these values:

ss_cli_iam_instance The caller is an instance thread.
ss_cli_iam_linedriver The caller is a line driver.

. ssClientDataPut maintains the bytes in and bytes out fields of the C-block. A

line driver should not attempt to maintain these itself.

. ssClientDataPut exerts flow control on its caller. When the caller's operation

results in either more than 16 MB being queued for the client or more than 128
distinct buffers being queued for the client, ssClientDataPut waits until the
corresponding line driver empties the buffers before returning to the caller. The
buffer will be emptied only if the server has sent the appropriate IPC message
to its line driver; ssClientDataPut does not send any IPC messages on behalf
of its caller.

. If the line driver you are using is record-oriented, then the data stream you

build for the client must be organized into records, each record prefixed by a
four-byte length. For more information on the description of record-oriented line
drivers, see Table 8 on page 15. “Connectivity and Line Drivers.”

Messages and Return Codes

Return Code
ss_cli_rc_success
ss_cli_rc_error
ss_cli_rc_error
ss_cli_rc_error

Reason Code Meaning

ss_cli_re_success ssClientDataPut completed successfully
ss_cli_re_bad_iam caller_type contains unrecognized value
ss_cli_re_out_of _range amount_of data contains illegal value
ss_cli_re_out_of_storage Not enough free storage to buffer this data

Programming Language Bindings

Language Language Binding File
Assembler SSASMCLI MACRO
PL/X SSPLXCLI COPY

272 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssClientDataTerm

ssClientDataTerm — Terminate Client Data Buffers

ssClientDataTerm
retcode
reascode
C-block_address

Pu rpose
Terminates client data buffer structures.
Operands
ssClientDataTerm
is the name of the function being invoked.
retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssClientDataTerm.
reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssClientDataTerm.
C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the
address of the C-block for the client in question.
Usage Note

This routine is meant for use by a line driver that is ending its handling of a client.
As part of its termination processing, the line driver should call ssC1ientDataTerm
so that the reusable server kernel can clean up its handling of buffered client data.

Messages and Return Codes

Return Code Reason Code Meaning
ss_cli_rc_success ss_cli_re_success ssClientDataTerm completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMCLI MACRO
PL/X SSPLXCLI COPY

Chapter 15. Function Descriptions 273

ssEnrollICommit

SSEnrollICommit — Commit Enrollment Set

ssEnrollCommit
retcode
reascode
set_name

Pu rpose
Commits changes to an open enrollment set.

Operands

ssEnrollCommit
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssEnrol1Commit.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssEnrol1Commit.

set_name
(input,CHAR,8) is a character string holding the name of the enroliment set to
be committed.

Usage Notes
1. This entry point commits the SFS file holding the named enroliment set. The
enroliment set remains loaded and available for other transactions.

2. If the commit fails, the appropriate action is to call ssEnrol11Drop to drop the set,
using drop type ss_enr_drop_rollback.

3. An attempt to commit a transient enrollment set will return a warning. No other
action is taken.

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrol1Commit completed successfully
SS_enr_rc_error ss_enr_re_db_not_found Named enrollment set not found
Ss_enr_rc_warning ss_enr_re_not_disk Named enrollment set is transient
SSs_enr_rc_error ss_enr_re_comm_falil Call to DMSCOMM failed

274 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssEnrollICommit

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 275

ssEnrollDrop

ssEnrollDrop — Drop Enrollment Set

ssEnrollDrop

retcode
reascode
set_name
drop_type

Purpose

Operands

Usage Notes

Drops (closes, unloads) an enrollment set.

ssEnrollDrop
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssEnrol1Drop.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssEnrol1Drop.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to
be dropped.

drop_type
(input,INT,4) is a signed four-byte binary input variable holding a value
indicative of the kind of drop to be performed:

ss_enr_drop_commit Commit changes
ss_enr_drop_rollback Roll back changes

1. This entry point closes the SFS file holding the named enroliment set, either
rolling back or committing the changes, according to the value of parameter
drop_type. It also deletes the data space and performs other cleanup
operations.

2. If ss_enr_drop_commit is requested and the commit fails, an error will be
returned and no other action will be taken. The appropriate recovery action is
to attempt a rollback drop.

3. An attempt to commit a transient enrollment set will return a warning and the
drop will proceed.

276 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssEnrollDrop

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrol1Drop completed successfully
SS_enr_rc_error ss_enr_re_bad_drop_type Unrecognized drop type
SS_enr_rc_error ss_enr_re_db_not_found Named enrollment set not found
SS_enr_rc_warning ss_enr_re_not_disk Named enrollment set is transient
SS_enr_rc_error ss_enr_re_close_fail Call to DMSCLOSE failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 277

ssEnrollList

ssEnrollList — List Enrollment Sets

ssEnrollList
retcode
reascode
C-block_pointer
Pu rpose
Produces a summary list of the loaded enroliment sets.
Operands

Usage Notes

ssEnrollList
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssEnrollList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssEnrollList.

C-block_pointer
(input,POINTER,4) is a signed four-byte binary input variable holding the
address of the C-block representing the client to whom the summary list should
be sent.

1. The reusable server kernel writes the summary list to the client represented by
C-block_pointer, using routine ssClientDataPut.

2. If the programmer wishes to capture the output of ssEnroll1List for his own
purposes, he can allocate storage to represent a C-block, initialize the C-block
using routine ssClientDatalInit, and then call routine ssEnrollList. When
ssEnrol1List returns, the programmer can call ssClientDataGet to retrieve the
response. After the response is decoded, he should deallocate the C-block.
Note that the response is record-oriented.

3. The form of the output is:

Name Pages Entries InUse D K

test 256 1 1 0d

The columns are:

Name The name of the enrollment set
Pages The size of the data space, in pages
Entries The number of records in the enrollment set

278 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssEnrollList

InUse The number of pages of data space storage being
used to hold records

“Dirty” bit - if 1, set needs to be committed

K Kind of set
d On-disk (permanent)
m In-memory (transient)

Messages and Return Codes

Return Code Reason Code Meaning
SS_enr_rc_success SS_enr_re_success ssEnrol1List completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 279

ssEnrollLoad

ssEnrollLoad — Load Enrollment Set

ssEnrollLoad

retcode
reascode
set_name
set_kind
dataspace_size
file_name
file_name_length

Purpose

Operands

Loads an enrollment set from the Shared File System, or initializes an empty
transient enroliment set.

ssEnrollLoad
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssEnrol1Load.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssEnrol1Load.

set_name
(input,CHAR,8) is a character string holding the name of the enroliment set to
be loaded.

set_kind
(input,INT,4) is a signed four-byte binary input variable holding a value that
indicates whether the enroliment set is permanent or transient, as follows:

ss_enr_kind_memory transient set
ss_enr_kind_disk permanent set

dataspace_size
(input,INT,4) is a signed four-byte binary input variable holding the size of the
dataspace.

file_name
(input,CHARfile_name_length) is a character string holding the name of the
SFS file containing the enrollment set.

file_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
file_name.

280 z/VvM V3R1.0 RSK Programmer's Guide and Reference

Usage Notes

ssEnrollLoad

. The name supplied in parameter set_name is used unchanged as a subpool

name in a call to ssMemoryCreateDS. The server author must ensure that this
name does not collide with any subpool nhames he might be using for other
purposes.

. The caller can use parameter dataspace_size to influence the size of the

created data space. Express the size in pages. The reusable server kernel
rounds the suggested size up to the next 16-page boundary before using it
further. To refrain from influencing the data space size, specify a size of zero.

. When it creates the data space, the reusable server kernel uses the larger of

the following two parameters as the size of the space:

e The number of records in the SFS file multiplied by the LRECL of the SFS
file, multiplied by 1.5
e The size requested by the caller in the dataspace_size parameter

If the larger of these two sizes is less than 1 MB, then the reusable server
kernel uses 1 MB (256 pages) instead.

. Parameter file_name accepts any syntax acceptable to CSL routine DMSOPEN.

This includes NAMEDEFs.

. The file nominated by file_name must reside in the Shared File System. If the

file does not (or would not) reside in the Shared File System, an error is
returned and the enrollment set is not loaded.

. The virtual machine in which the server program is running must have write

authority to the file nominated by file_name.

. If the file nominated by file_name does not exist, it is created and a warning is

returned.

. The file nominated by file_name is opened on its own work unit.

. If a transient enroliment set is being loaded, no CMS file I/O takes place and

no work unit is gotten. The data space is created, initialized as empty, and

made ready to hold records.

Messages and Return Codes

Return Code
SS_enr_rc_success
SS_enr_rc_error

SS_enr_rc_error

SSs_enr_rc_error
SSs_enr_rc_error
SSs_enr_rc_error
SSs_enr_rc_error
Ss_enr_rc_error
SSs_enr_rc_error
Ss_enr_rc_error
SSs_enr_rc_error
Ss_enr_rc_error
SS_enr_rc_warning

Reason Code
SS_€enr_re_success
ss_enr_re_bad_kind

ss_enr_re_bad_length

Ss_enr_re_no_storage
ss_enr_re_db_exists
ss_enr_re_dscr_fail
ss_enr_re_gwu_fail
ss_enr_re_open_fail
ss_enr_re_not_sfs
ss_enr_re_not_v
ss_enr_re_point_fail
ss_enr_re_read_fail
ss_enr_re_new_file

Meaning

ssEnrol1Load completed successfully
Parameter set_kind contains an unrecognized
value

Parameter file_name_length contains an
unrecognized value

Insufficient storage is available

Set set_name already exists

Attempt to create data space failed

Attempt to get work unit failed

Attempt to open file failed

File is not SFS-resident

File is not V-format

Attempt to move file pointers failed

Attempt to read SFS file failed

SFS file not found - new permanent enrollment
set created

Chapter 15. Function Descriptions 281

ssEnrollLoad

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

282 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssEnrollRecordGet

ssEnrollRecordGet — Get Enrollment Record

ssEnrollRecordGet

retcode
reascode
set_name
key

buffer
buffer_size
data_length

Purpose

Operands

Retrieves a record from an enrollment set.

ssEnrollRecordGet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssEnrol1RecordGet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssEnrol1RecordGet.

set_name
(input,CHAR,8) is a character string holding the name of the enroliment set to
be interrogated.

key
(input,CHAR,64) is a character string holding the key of the record to be
retrieved.

buffer
(output, CHAR,buffer_size) is a character string buffer to hold the data of the
retrieved record.

buffer_size
(input,INT,4) is a signed four-byte binary input variable holding the size of
buffer.

data_length
(output,INT,4) is a signed four-byte binary output variable to hold the amount of
data stored under key key.

Chapter 15. Function Descriptions 283

ssEnrollRecordGet

Usage Notes
1. Every byte of the key is significant. If your application's keys are, say, text
strings, be sure to pad your keys on the right to fill out the entire key field.

2. Case is significant in keys.

3. If the amount of data stored under key key will not fit in buffer, as much as will
fit is returned, output data_length is set to the actual size of the data, and a
warning is returned. This lets the caller retry the operation with a buffer large
enough to hold all of the data.

4. If the record does not exist in set set_name, an error is returned.

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrol1RecordGet completed successfully
SS_enr_rc_error ss_enr_re_db_not_found Set set_name does not exist

SS_enr_rc_error ss_enr_re_rec_not_found No record matches key key

SS_enr_rc_warning ss_enr_re_truncated Record was found but truncated because buffer

could not contain all of it

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

284 z/vM V3R1.0 RSK Programmer's Guide and Reference

ssEnrollRecordInsert

ssEnrollRecordInsert — Insert Enrollment Record

ssEnrollRecordInsert

retcode
reascode
set_name
key

buffer
data_length
insert_type

Purpose

Operands

Inserts or replaces a record in an enroliment set.

ssEnrollRecordInsert
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssEnrol1RecordInsert.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssEnrol1RecordInsert.

set_name
(input,CHAR,8) is a character string holding the name of the enroliment set to
be modified.

key
(input,CHAR,64) is a character string holding the key of the record to be
inserted or replaced.

buffer
(output,CHAR,data_length) is a character string buffer holding the data to be
associated with key.

buffer_size
(input,INT,4) is a signed four-byte binary input variable holding the size of
buffer.

data_length
(output,INT,4) is a signed four-byte binary output variable to hold the amount of
data stored under key key.

insert_type
(input,INT,4) is a signed four-byte binary input variable to hold the kind of
insertion being done:

Ss_enr_insert_new New record
Ss_enr_insert_replace Replacement record

Chapter 15. Function Descriptions 285

ssEnrollRecordInsert

Usage Notes

6.

. Every byte of the key is significant. If your application's keys are, say, text

strings, be sure to pad your keys on the right to fill out the entire key field.

. Case is significant in keys.

. The differences between ss_enr_insert_new and ss_enr_insert_replace are:

e For _new, the reusable server kernel will fail the API call if the enrollment
set already holds a record bearing key key. Thus the programmer can use
_new to guard against inadvertent replacements.

e For _replace, if the record bearing key key already exists, it is replaced and
a warning is returned.

. The change is not permanent until it is committed.

. For permanent enrollment sets, the data cannot be more than 65,500 bytes

long.

For transient enrollment sets, the data cannot be more than 16 MB long.

Messages and Return Codes

Return Code
SS_enr_rc_success
SS_enr_rc_error

Ss_enr_rc_error
Ss_enr_rc_error
Ss_enr_rc_error
Ss_enr_rc_error
SS_enr_rc_warning
Ss_enr_rc_error

Reason Code Meaning

SS_enr_re_success ssEnrol1RecordInsert completed successfully

ss_enr_re_bad_method Parameter insert_type contains an unrecognized
value

ss_enr_re_bad_length Parameter data_length contains an invalid value

ss_enr_re_db_not_found Set set_name does not exist

SS_enr_re_no_storage Insufficient storage to satisfy request

SS_enr_re_write_storage Write to SFS file failed

SS_enr_re_rec_exists Record exists and was replaced

SS_enr_re_rec_exists Record exists and was not replaced

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

286 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssEnrollRecordList

ssEnrollRecordList — List Records In Enrollment Set

ssEnrollRecordList

retcode
reascode
set_name
C-block_pointer

Purpose

Operands

Usage Notes

Produces a summary list of the records in an enroliment set.

ssEnrollRecordList
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssEnrol1RecordList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssEnrol1RecordList.

set_name
(input,CHAR,8) is a character string holding the name of the enroliment set.

C-block_pointer
(input,POINTER,4) is a signed four-byte binary input variable holding the
address of the C-block representing the client to whom the summary list should
be sent.

1. The reusable server kernel writes the summary list to the client represented by
C-block_pointer, using routine ssClientDataPut.

2. If the programmer wishes to capture the output of ssEnrolTRecordList for his
own purposes, he can allocate storage to represent a C-block, initialize the
C-block using routine ssClientDatalnit, and then call routine
ssEnrol1RecordList. When ssEnrol1RecordList returns, the programmer can
call ssClientDataGet to retrieve the response. After the response is decoded,
he should deallocate the C-block. Note that the response is record-oriented.

3. The output of ssEnrol1RecordList is simply one enroliment record per output
record. Each output record contains only the key of the corresponding
enrollment record.

4. To retrieve the data associated with a given key, use ssEnrol1RecordGet.

Chapter 15. Function Descriptions 287

ssEnrollRecordList

Messages and Return Codes

Return Code Reason Code Meaning
SS_enr_rc_success SS_enr_re_success ssEnrol1RecordList completed successfully
SS_enr_rc_error ss_enr_re_db_not_found Set set_name is not loaded

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

288 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssEnrollRecordRemove

ssEnrollRecordRemove — Remove Enrollment Record

ssEnrollRecordRemove
retcode
reascode
set_name
key

Pu rpose
Removes a record from an enrollment set.

Operands
ssEnrollRecordRemove
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return

code from ssEnrol1RecordRemove.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason

code from ssEnrol1RecordRemove.

set_name
(input,CHAR,8) is a character string holding the name of the enroliment set to
be modified.

key
(input,CHAR,64) is a character string holding the key of the record to be
removed.

Usage Notes
1. Every byte of the key is significant. If your application's keys are, say, text
strings, be sure to pad your keys on the right to fill out the entire key field.

2. Case is significant in keys.
3. If the record bearing key key is not found, an error is returned.

4. The change is not permanent until it is committed.

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrol1RecordRemove completed successfully
SS_enr_rc_error ss_enr_re_db_not_found Set set_name does not exist

SS_enr_rc_error ss_enr_re_rec_not_found Record bearing key key does not exist
SS_enr_rc_error SS_enr_re_write_storage Write to SFS file failed

Chapter 15. Function Descriptions 289

ssEnrollIRecordRemove

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

290 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssMemoryAllocate

ssMemoryAllocate — Allocate Memory

ssMemoryAllocate

return_code
reason_code
min_bytes_needed
max_bytes needed
subpool_name
align_type
memory_pointer
bytes obtained

Purpose

Operands

Allocates a block of primary storage (memory).

ssMemoryAllocate
is the name of the function being invoked.

return_code
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssMemoryAllocate.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssMemoryAllocate.

min_bytes_needed
(input,INT,4) is a signed four-byte binary input variable holding the minimum
number of bytes needed.

max_bytes needed
(input,INT,4) is a signed four-byte binary input variable holding the maximum
number of bytes needed.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool from
which the storage should be allocated.

align_type
(input,INT,4) is a signed four-byte binary input variable holding the type of
alignment the new buffer will require.

memory_pointer
(output,INT,4) is a signed four-byte binary output variable to hold the returned
memory address.

bytes obtained
(output,INT,4) is a signed four-byte binary output variable to hold the returned
number of bytes actually allocated.

Chapter 15. Function Descriptions 291

ssMemoryAllocate

Usage Notes
1. To issue a request for a block of storage of variable size, set
min_bytes needed equal to the minimum amount of storage needed and set
max_bytes_needed equal to the maximum amount of storage desired.

2. To issue a request for a block of storage of fixed size, set
min_bytes needed=max_bytes needed.

3. Parameter subpool_name is used unchanged in calls to CMSSTOR and
therefore must adhere to CMSSTOR's rules for subpool names.

4. Parameter align_type must have one of these values:

ss_mem_align_norm Align allocated storage on doubleword boundary
ss_mem_align_page Align allocated storage on page boundary

5. The reusable server kernel allocates and releases memory in multiples of
doublewords. The amount of storage requested by the caller will be rounded
up to the next doubleword boundary before the allocation request is processed.

6. If the requested storage could not be obtained, memory_pointer and
bytes obtained are set to zero and appropriate return and reason codes are
returned.

Messages and Return Codes

Return Code Reason Code Meaning

SS_mem_rc_success SS_mem_re_success ssMemoryAllocate completed successfully
SS_mem_rc_error ss_mem_re_bad_align align_type is not recognized
SS_mem_rc_error ss_mem_re_bad_amount Error in amount specification
SS_mem_rc_error ss_mem_re_out_of storage Storage could not be obtained
SS_mem_rc_error ss_mem_re_subpool_deleted Subpool deleted while call was in progress

Programming Language Bindings

Language Language Binding File
Assembler SSASMMEM MACRO
PL/X SSPLXMEM COPY

292 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssMemoryCreateDS

ssMemoryCreateDS — Create Data Space

ssMemoryCreateDS

return_code
reason_code
subpool_name
number_of pages
storage_key
option_count
option_array
asit
alet

Purpose

Operands

Creates a data space and prepares the reusable server kernel to manage the
storage therein.

ssMemoryCreateDS
is the name of the function being invoked.

return_code
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssMemoryCreateDS.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssMemoryCreateDS.

subpool_name
(input,CHAR,8) is a character string holding the subpool hame to be assigned
to the new data space.

number_of _pages
(input,INT,4) is a signed four-byte binary input variable specifying the size to be
passed to DMSSPCC.

storage_key
(input,INT,4) is a signed four-byte binary input variable specifying the storage
key to be passed to DMSSPCC.

option_count
(input,INT,4) is a signed four-byte binary input variable specifying the option
count to be passed to DMSSPCC.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables
specifying the option array to be passed to DMSSPCC.

asit
(output,CHAR,8) is an output character buffer to hold the returned ASIT.

Chapter 15. Function Descriptions 293

ssMemoryCreateDS

Usage Notes

alet

8.

(output,INT,4) is an signed four-byte binary output variable to hold the returned
ALET.

. Review the usage notes for CSL routines DMSSPCC and DMSSPLA before using

ssMemoryCreateDS. For more information, see z/VM: CMS Callable Services
Reference.

. The value of subpool_name is used in constructing the name of the data space

and therefore must adhere to the character set composition rules for data
space names. For more information, see the description of CSL routine
DMSSPCC in the book z/VM: CMS Callable Services Reference.

. The reusable server kernel uses storage in the primary address space to keep

track of free and used pieces of storage in the data space. The primary
address space storage used for this purpose is taken from CMS through
CMSSTOR OBTAIN under subpool name subpool_name.

. Parameters number_of_pages and storage_key are passed directly to DMSSPCC.

. If option_count is zero, ssMemoryCreateDS uses DMSSPCC's defaults, except that it

asks for the data space to be created SHARE. The virtual machine's XCONFIG
ADDRSPACE directory entry must be set up accordingly.

. ssMemoryCreateDS asks DMSSPLA to create the ALET using the WRITE and

SYNCH options. The reusable server kernel does not keep track of the
generated ALET; the application is free to use DMSSPLR and DMSSPLA to
manipulate ALETSs.

. After calling ssMemoryCreateDS successfully, allocate and release storage in the

data space using routines ssMemoryAllocate and ssMemoryRelease.

To delete the data space, use ssMemoryDelete.

Messages and Return Codes

Return Code
SS_mem_rc_success
SSs_mem_rc_error
Ss_mem_rc_error
SS_mem_rc_error
Ss_mem_rc_error
SSs_mem_rc_error
sSs_mem_rc_error

Reason Code Meaning

SS_mem_re_success ssMemoryCreateDS completed successfully
ss_mem_re_bad_amount number_of_pages is invalid
ss_mem_re_bad_key storage_key is invalid
ss_mem_re_spcc_fail DMSSPCC failed

ss_mem_re_spla_fail DMSSPLA failed
ss_mem_re_out_of_storage Storage could not be obtained
ss_mem_re_subpool_exists Subpool already exists

Programming Language Bindings

Language Language Binding File
Assembler SSASMMEM MACRO
PL/X SSPLXMEM COPY

294 z/vM V3R1.0 RSK Programmer's Guide and Reference

ssMemoryDelete

ssMemoryDelete — Delete Subpool

ssMemoryDelete
return_code
reason_code
subpool_name

Pu rpose
Deletes a memory subpool, and the corresponding data space if there is one.

Operands

ssMemoryDelete
is the name of the function being invoked.

return_code
(output,INT,4) is a signed four-byte binary output variable to hold the return

code from ssMemoryDelete.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssMemoryDelete.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool to be
deleted.

Usage Notes
1. The reusable server kernel deletes its record of the subpool and issues a
corresponding SUBPOOL DELETE call to CMS.

2. If the subpool is a data space, the corresponding data space is also deleted.

Messages and Return Codes

Return Code Reason Code Meaning

SS_mem_rc_success SS_mem_re_success ssMemoryDelete completed successfully
SS_mem_rc_error ss_mem_re_no_subpool Unrecognized subpool name
SS_mem_rc_error ss_mem_re_spd_fail SUBPOOL DELETE call failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMMEM MACRO
PL/X SSPLXMEM COPY

Chapter 15. Function Descriptions 295

ssMemoryRelease

ssMemoryRelease — Release Memory

ssMemoryRelease

return_code
reason_code
bytes released
subpool_name
memory_pointer

Purpose

Operands

Usage Notes

Releases a block of primary storage (memory).

ssMemoryRelease
is the name of the function being invoked.

return_code
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssMemoryRelease.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssMemoryRelease.

bytes released
(input,INT,4) is a signed four-byte binary input variable holding the number of
bytes being released.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool from
which the storage was allocated.

memory_pointer
(input,INT,4) is a signed four-byte binary input variable holding the address of
the storage being released.

1. The buffer being released must reside on a doubleword boundary.

2. If it does not represent an integral number of doublewords, parameter
bytes released is rounded up to the next doubleword boundary before being
used.

Messages and Return Codes

Return Code
SS_Mmem_rc_success
SS_mem_rc_error
SS_mem_rc_error
SS_mem_rc_error

Reason Code Meaning

SS_mem_re_success ssMemoryRelease completed successfully
ss_mem_re_bad_align Buffer is not aligned on doubleword boundary
ss_mem_re_bad_amount Error in amount specification
ss_mem_re_no_subpool Unrecognized subpool name

296 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssMemoryRelease

Return Code Reason Code Meaning

SS_mem_rc_error ss_mem_re_not_alloc Some or all of buffer is already free
SS_mem_rc_error ss_mem_re_subpool_deleted Subpool deleted while call in progress
SS_mem_rc_error ss_mem_re_out_of_storage Not enough storage available

Programming Language Bindings

Language Language Binding File
Assembler SSASMMEM MACRO
PL/X SSPLXMEM COPY

Chapter 15. Function Descriptions 297

ssServerRun

ssServerRun — Run the Server

ssServerRun
retcode
reascode

Purpose
Runs the server program.

Operands

ssServerRun
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return

code from ssServerRun.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason

code from ssServerRun.

Usage Note
Call this routine only from RSKMAIN and only after you have called ssServiceBind
sufficiently to set up your server.

Messages and Return Codes

Return Code Reason Code Meaning
SS_Srv_rc_success SS_Srv_re_success ssServerRun completed successfully
SS_Srv_rc_error anything else Nonzero return code from PROFILE RSK.

Programming Language Bindings

Language Language Binding File
Assembler SSASMSRV MACRO
PL/X SSPLXSRV COPY

298 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssServerStop

ssServerStop — Stop the Server

ssServerStop
retcode
reascode

Purpose
Stops the server program.

Operands

ssServerStop
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssServerStop.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssServerStop.

Usage Note
Calling this function will cause the WAITSERV command in PROFILE RSK to complete.

Messages and Return Codes

Return Code Reason Code Meaning
SS_Srv_rc_success SS_Srv_re_success ssServerStop completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMSRV MACRO
PL/X SSPLXSRV COPY

Chapter 15. Function Descriptions 299

ssServiceBind

ssServiceBind — Bind A Service

ssServiceBind

retcode

reascode
service_name
service_name_length
init_addr
service_addr
term_addr

Purpose

Operands

Informs the reusable server kernel of the existence of a new service.

ssServiceBind
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssServiceBind.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssServiceBind.

service_name
(input,CHAR,service_name_length) is the name of the new service.

service_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the
service name.

init_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of
the service's initialization entry point.

service_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of
the service's service entry point.

term_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of
the service's termination entry point.

service_type
(input,INT,4) is a signed four-byte binary input variable holding the kind of
service being bound.

300 z/VvM V3R1.0 RSK Programmer's Guide and Reference

Usage Notes

ssServiceBind

. Case is not significant in service names.

. The parameter list array passed to the initialization entry point (pointed to by

R1) is organized as shown inTable 3 on page 7 .

. To signal successful initialization, the initialization entry point should return with

the return and reason code words set to zero. A nonzero return code will
cause the start of the service to fail.

. The parameter list array passed to the service entry point (pointed to by R1) is

organized as shown inTable 4 on page 7 .

. The parameter list array passed to the termination entry point (pointed to by

R1) is organized as shown inTable 5 on page 8.

. The values that can be supplied for service_type are:

SS_srv_srvtype _normal Plain old service.
Ss_srv_srvtype_Id Plain old line driver.
Ss_srv_srvtype_ldss Self-sourced line driver.

. To activate the service, use one of the line drivers' START commands.

. ssServiceBind will produce correct results only when it is called by RSKMAIN

prior to ssServerRun. ssServiceBind should never be called under any other
conditions. Unpredicable results could occur.

Messages and Return Codes

Return Code
SS_Srv_rc_success
SS_Srv_rc_error
SS_Srv_rc_error
SS_Srv_rc_error
SS_Srv_rc_error

Reason Code Meaning

SS_Srv_re_success ssServiceBind completed successfully
ss_srv_re_out_of_range service_name_length<0 or >8
ss_srv_re_bad_type service_type contains unrecognized value.
SS_Srv_re_exists Service already exists
ss_srv_re_out_of_storage Out of storage

Programming Language Bindings

Language Language Binding File
Assembler SSASMSRV MACRO
PL/X SSPLXSRV COPY

Chapter 15. Function Descriptions 301

ssServiceFind

ssServiceFind — Find A Service

ssServiceFind
retcode
reascode
service_name
service_name_length
S-block_address

Purpose
Obtains descriptive information about a service.

Operands

ssServiceFind
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssServiceFind.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssServiceFind.

service_name
(input,CHAR,service_name_length) is the name of the new service.

service_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the
service name.

S-block_address
(output,POINTER,4) is a signed four-byte binary output variable to hold the
address of the found service's S-block.

Usage Notes
1. Case is not significant in service names.

2. The returned S-block is organized according toTable 2 on page 6 .

3. If the service could not be found, a return and reason code are generated and
sblock _address is returned as 0.

Messages and Return Codes

Return Code Reason Code Meaning

SS_SIV_Ic_success SS_SIv_re_success ssServiceFind completed successfully
SS_Srv_rc_error ss_srv_re_out_of _range service_name_length<0 or >8
SS_Srv_rc_error ss_srv_re_not_found The named service could not be found.

302 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssServiceFind

Programming Language Bindings

Language Language Binding File
Assembler SSASMSRV MACRO
PL/X SSPLXSRV COPY

Chapter 15. Function Descriptions 303

ssSgpCreate

ssSgpCreate — Create a Storage Group

ssSgpCreate

retcode

reascode
storage_group_number
minidisk_count
minidisk_array
attribute_count
attribute_array

Purpose

Operands

Identifies a set of minidisks to be managed as a storage group.

ssSgpCreate
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssSgpCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssSgpCreate.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of
the new storage group.

minidisk_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
minidisks in the new storage group.

minidisk_array
(input,INT,4*minidisk_count) is an array of signed four-byte binary input
variables holding the device addresses of the minidisks to be included in the
new storage group.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
attributes in the attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input
variables holding the attributes to be associated with the new storage group.

304 z/vM V3R1.0 RSK Programmer's Guide and Reference

Usage Notes

ssSgpCreate

. Parameter storage_group_number must be in the range 0 to 1023, inclusive.

. Each minidisk to be included in the storage group must have already been

formatted at 4 KB by the FORMAT command and reserved by the RESERVE
command. The reusable server kernel requires that its minidisks exhibit this
format.

. There is a limit of 13,000 minidisks per storage group, and the sum of the sizes

of the data areas on the minidisks must not exceed X'FFFFFFFF' 4 KB
blocks.

. The storage group's existence is recorded in the storage group definition file

and persists across instances of the server program. For more information on
the description of the storage group definition file, see Chapter 12, “Initialization
and Profiles” on page 71.

. No attributes are currently recognized in the attribute_array (in other words, if

attribute_count is nonzero, ss_sgp_re_bad_attrib is returned).

Messages and Return Codes

Return Code
SS_Sgp_rc_success
SS_sgp_rc_error

SS_sgp_rc_error

SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_warning

Reason Code Meaning

SS_sgp_re_success ssSgpCreate completed successfully

ss_sgp_re_out_of_range storage_group_number, minidisk_count or
attribute_count is out of range

ss_sgp_re_bad_attrib attribute_array contains an unrecognized
attribute

ss_sgp_re_mx_fail Mutex creation or acquisition failed

SS_sgp_re_exists Storage group already exists

ss_sgp_re_out_of_storage Out of storage

ss_sgp_re_cv_fail Condition variable creation failed

ss_sgp_re_rewrite_fail Rewrite of storage group definitions failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

Chapter 15. Function Descriptions 305

ssSgpDelete

ssSgpDelete — Delete a Storage Group

ssSgpDelete
retcode
reascode
storage_group_number

Pu rpose
Removes a set of minidisks from the control of the reusable server kernel.

Operands

ssSgpDelete
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssSgpDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssSgpDelete.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of
the storage group to be deleted.

Usage Notes
1. To be deleted, the storage group must not be started.

2. The storage group definition file is updated to reflect the fact that the storage
group no longer exists.

3. No I/O is done to the storage group as part of deletion; the minidisks remain as
they were. To recreate the storage group, just issue an appropriate call to
ssSgpCreate.

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_sgp_re_success ssSgpDelete completed successfully
SS_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

SS_sgp_rc_error ss_sgp_re_not_found Storage group not found

SS_sgp_rc_error Ss_sgp_re_online Storage group is online

SS_sgp_rc_error SS_sgp_re_maint Maintenance in progress
SS_sgp_rc_warning Ss_sgp_re_rewrite_fail Rewrite of storage group definitions failed

306 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssSgpDelete

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

Chapter 15. Function Descriptions 307

ssSgpFind

ssSgpFind — Find a Storage Group

ssSgpFind

retcode

reascode
storage_group_name
storage_group_number
io_mode

total_blocks

Purpose

Operands

Usage Notes

Returns information about the storage group whose name is supplied.

ssSgpFind
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return

code from ssSgpFind.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason

code from ssSgpFind.

storage_group_name
(input,CHAR,8) is an input character string holding the name of the storage

group to find.

storage_group_number
(output,INT,4) is a signed four-byte binary output variable to hold the number of

the found storage group.

io_mode
(output,INT,4) is a signed four-byte binary output variable to hold the /O mode
of the found storage group.

total_blocks
(output,INT,4) is a signed four-byte binary output variable to hold the number of
blocks in the storage group.

1. Because the lookup is by name, only started storage groups can be found.
2. Right-pad the name with spaces.
3. The value returned in io_mode is one of:

ss_sgp_attrib_block_rw Started read-write
ss_sgp_attrib_block_ro Started read-only

308 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssSgpFind

Messages and Return Codes

Return Code Reason Code Meaning
SS_Sgp_rc_success SS_sgp_re_success ssSgpFind completed successfully
SS_sgp_rc_error ss_sgp_re_not_found Storage group is not found

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

Chapter 15. Function Descriptions 309

ssSgplist

ssSgpList — List Storage Groups

ssSgplist
retcode
reascode
number_expected
number_returned
storage_group_list
Purpose
Returns a list of the known storage groups.
Operands

Usage Notes

ssSgplist
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssSgpList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssSgplList.

number_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of
storage groups whose identifiers can fit into the storage_group_list array.

number_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of
storage group identifiers placed into the storage_group_list array.

storage_group_list
(output,INT,4*number_expected) is an array of signed four-byte binary output
variables to hold the identifiers of the existing storage groups.

1. If the actual number of existing storage groups is greater than
number_expected, then the actual number of storage groups is filled into
number_returned, the identifiers of the first number_expected storage groups
are returned in storage_group_list, and a warning is given.

2. To determine information about a particular storage group, use ssSgpQuery.

310 z/vM V3R1.0 RSK Programmer's Guide and Reference

ssSgplList

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_sgp_re_success ssSgpList completed successfully
SS_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

sS_sgp_rc_warning ss_sgp_re_too_many More storage groups than number_expected

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

Chapter 15. Function Descriptions 311

ssSgpQuery

ssSgpQuery — Query a Storage Group

ssSgpQuery

retcode

reascode
storage_group_number
io_mode

total_blocks
status_word
attributes_expected
attributes_returned
attribute_array
minidisks_expected
minidisks_returned
minidisk_address_array
minidisk_blocks_array

Purpose

Operands

Returns information about a specific storage group.

ssSgpQuery
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssSgpQuery.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssSgpQuery.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of
the storage group about which information is desired.

io_mode
(output,INT,4) is a signed four-byte binary output variable to hold the storage
group /0 mode.

total_blocks
(output,INT,4) is a signed four-byte binary output variable to hold the total
number of 4 KB blocks in the storage group.

status_word
(output,INT,4) is a signed four-byte binary output variable to hold the storage
group status word.

attributes_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of
attribute identifiers that will fit in the attribute_array array.

312 z/vM V3R1.0 RSK Programmer's Guide and Reference

Usage Notes

ssSgpQuery

attributes_returned
(input,INT,4) is a signed four-byte binary output variable to hold the number of
entries filled into the attribute_array array.

attribute_array
(output,INT,4*attribute_count) is an array of signed four-byte binary output
variables to hold the returned storage group attribute indicators.

minidisks_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of
minidisks for which descriptive information will fit in the minidisk_address_array,
minidisk_total_array, and minidisk_free_array arrays.

minidisks_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of
minidisks for which descriptive information was deposited in the
minidisk_address_array, minidisk_total_array, and minidisk_free_array arrays.

minidisk_address_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output
variables to hold the returned minidisk addresses.

minidisk_total_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output
variables to hold the returned sizes of each of the minidisks in the storage
group.

minidisk_free_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output

variables to hold the returned free block counts for each of the minidisks in the
storage group.

1. The possible values returned for io_mode are:

ss_sgp_attrib_offline Not started (not online)
ss_sgp_attrib_block_ro Started for read-only block 1/0O
ss_sgp_attrib_block_rw Started for read-write block 1/0

2. The size information (total blocks, blocks per minidisk) and status word returned
by this function are meaningful only if the storage group is started.

3. The integer returned in status_word is to be interpreted bit-by-bit according to
the following key. In this key, the bits are numbered from 0 to 31, most
significant to least significant. If the named bit is set, the condition is true. The
bits that are not mentioned are meaningless.

Bit Description

0 Stop in progress
1 VM Data Spaces in use
2 DIAG X'250' in use

4. No attributes are currently returned in attribute_array.

5. If the actual number of minidisks is greater than minidisks_expected, then the
actual number of minidisks is returned in parameter minidisks_returned, the

Chapter 15. Function Descriptions 313

ssSgpQuery

descriptive information for the first minidisks_expected minidisks is filled into the
arrays, and a warning is given.

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_sgp_re_success ssSgpQuery completed successfully

SS_sgp_rc_error ss_sgp_re_out_of_range Bad value for attributes_expected or
minidisks_expected

SS_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

SS_sgp_rc_error ss_sgp_re_not_found Storage group not found

SS_sgp_rc_warning Ss_sgp_re_too_many More attributes than attributes_expected or more

minidisks than minidisks_expected

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

314 z/vM V3R1.0 RSK Programmer's Guide and Reference

ssSgpRead

ssSgpRead — Read a Storage Group

ssSgpRead

retcode

reascode
storage_group_number
starting_block
block_count

buffer_alet

buffer

Purpose

Operands

Reads one or more blocks from a storage group.

ssSgpRead
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssSgpRead.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssSgpRead.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of
the storage group from which blocks should be read.

starting_block
(input,INT,4) is a signed four-byte binary input variable holding the starting
block number of the block extent to be read.

block count
(input,INT,4) is a signed four-byte binary input variable holding the number of
blocks to be read.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be
used when referring to buffer.

buffer
(output,CHAR,4096*block_count) is a character string to hold the data read
from the storage group.

Chapter 15. Function Descriptions 315

ssSgpRead

Usage Notes

6.

. The first block of the storage group is block 0.
. This entry point can be used only if the storage group is online.

. This entry point does not serialize access to storage groups. If your application

performs storage group 1/O on multiple threads, it is possible that the /0O might
happen in parallel, especially in MP situations. It is the application developer's
responsibility to implement any serialization paradigms required.

. When VM Data Spaces are used, the transfer from the storage group's data

space to the target space is done with PSW key 0.

. When a CP DIAGNOSE is used, CP is instructed to use key 0 in the channel

programs it builds.

If DIAG X'A4' is being used for storage group 1/O, buffer_alet must be 0.

Messages and Return Codes

Return Code
SS_Sgp_rc_success
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error

Reason Code Meaning

SS_sgp_re_success ssSgpRead completed successfully
Ss_sgp_re_mx_fail Mutex acquisition failed
Ss_sgp_re_not_found Storage group not found
Ss_sgp_re_out_of_range Extent is not within storage group size
Ss_sgp_re_io_fail Requested read failed

Programming Language Bindings

316

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

z/VM V3R1.0 RSK Programmer's Guide and Reference

ssSgpStart

ssSgpStart — Start a Storage Group

ssSgpStart

retcode

reascode
storage_group_number
storage_group_name
attribute_count
attribute_array

Purpose

Operands

Usage Notes

Makes a storage group ready for use.

ssSgpStart
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssSgpStart.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssSgpStart.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the humber of
the storage group to be brought online.

storage_group_name
(input,CHAR,8) is a character string holding the name to be assigned to the
storage group while it is online.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
attributes present in the attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input
variables holding the attributes to be used in bringing the storage group online.

1. Each minidisk to be included in the storage group must have already been
formatted at 4 KB by the FORMAT command and reserved by the RESERVE
command. The reusable server kernel requires that its minidisks exhibit this
format.

2. There is a limit of 13,000 minidisks per storage group, and the sum of the sizes
of the data areas on the minidisks must not exceed 16 TB (X'FFFFFFFF' 4 KB
blocks).

Chapter 15. Function Descriptions 317

ssSgpStart

3.
4.

10.

To be eligible for starting, the storage group must be completely stopped.

These attributes are recognized in the attribute_array (defaults are labeled as
such):

ss_sgp_attrib_ds Use VM Data Spaces MAPMDISK facility (default)
Ss_sgp_attrib_no_ds Do not use VM Data Spaces MAPMDISK facility
ss_sgp_attrib_block_rw Online read-write for block I/O (default)
ss_sgp_attrib_block ro Online read-only for block I/O

. To use ss_sgp_attrib_ds successfully, the real hardware and the server virtual

machine's CP directory entry must be set up appropriately. This includes:
e The z/VM system must be running on an ESA/390(™) processor.
e In the CP directory, MACHINE XC must be specified.

* In the CP directory, XCONFIG ADDRSPACE must allow enough data spaces to
span the storage groups. Each 2 GB or fraction thereof in a storage group
requires one data space.

e In the CP directory, XCONFIG ADDRSPACE must allow an aggregate data
space size at least as large as the sum of the sizes of the storage groups
to be brought online with this attribute.

. If ss_sgp_attrib_ds is specified and the reusable server kernel could not

activate VM Data Spaces support for it, then the reusable server kernel:
a. Sets a warning return code indicating why VM Data Spaces failed, and

b. Attempts to bring the storage group online as if ss_sgp_attrib_no_ds had
been specified.

. If ss_sgp_attrib_no_ds is specified, then the reusable server kernel makes use

of DIAGNOSE X'250' or DIAGNOSE X'A4' for I/O to the storage group, as
follows:

a. The reusable server kernel attempts to initialize the DIAGNOSE X'250'
environment for each minidisk in the storage group, using the diagnose in
asynchronous mode and with minidisk caching (MDC) enabled.

b. If DIAGNOSE X'250' initialization is successful for all minidisks in the
storage group, then DIAGNOSE X'250' is used for I/O to the storage
group.

c. If DIAGNOSE X'250' initialization fails for at least one minidisk in the
storage group, then DIAGNOSE X'A4' is used for I/O to the storage group
and a warning return code and reason code are returned.

. Reason codes related to VM Data Spaces are produced with a warning return

code. These reason codes indicate that the use of VM Data Spaces failed and
that DIAGNOSE X'250' is being used instead.

. Reason codes related to DIAGNOSE X'250' are produced with a warning

return code. These reason codes indicate that the use of DIAGNOSE X'250'
failed and that DIAGNOSE X'A4' is being used instead.

If reason code ss_sgp_re_read_only is produced and it really is desired to bring
the storage group online read-write, follow these steps:

Step Task

1 Determine which minidisk(s) are linked read-only.

318 z/VvM V3R1.0 RSK Programmer's Guide and Reference

ssSgpStart

Step Task

2 Detach the read-only minidisks and link them read-write.

3 Try again to start the storage group.

Messages and Return Codes

Return Code
SS_Sgp_rc_success
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_warning
SS_sgp_rc_error

SS_sgp_rc_error
SS_sgp_rc_warning
SS_sgp_rc_warning
SS_sgp_rc_warning
SS_sgp_rc_warning

Reason Code
SS_sgp_re_success
ss_sgp_re_bad_attrib
ss_sgp_re_mx_fail
ss_sgp_re_not_found
SS_sgp_re_name_in_use
ss_sgp_re_online
ss_sgp_re_vdg_fail

ss_sgp_re_read_only
ss_sgp_re_ds_falil
ss_sgp_re_pool_fail
ss_sgp_re_map_fail
ss_sgp_re_diag_250_falil

Programming Language Bindings

Language
Assembler

Language Binding File
SSASMSGP MACRO
SSPLXSGP COPY

Meaning

ssSgpStart completed successfully
Unrecognized item in attribute array
Mutex acquisition failed

Storage group not found

Storage group name already in use
Storage group is already online

Minidisk format incorrect or query of format
failed

At least one minidisk is linked read-only
Data space creation failed

MAPMDISK minidisk pool definition failed
MAPMDISK minidisk pool mapping failed
Use of DIAGNOSE X'250' failed

Chapter 15. Function Descriptions 319

ssSgpStop

ssSgpStop — Stop a Storage Group

ssSgpStop
retcode
reascode
storage_group_number
attribute_count
attribute_array
Purpose
Makes a storage group unready.
Operands

Usage Notes

ssSgpStop
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssSgpStop.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssSgpStop.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of
the storage group to be taken offline.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of
attributes present in the attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input
variables holding the attributes to be used in taking the storage group offline.

1. To stop all defined storage groups, set storage_group_number to -1.

2. Once the stop of the storage group begins, no more block 1/O may be started,
and the stop completes only after all block I/O to the storage group is
completed.

3. No elements are currently recognized in attribute_array.

320 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssSgpStop

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_sgp_re_success ssSgpStop completed successfully
SS_sgp_rc_error ss_sgp_re_out_of _range Bad value for attribute_count
SS_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed
SS_sgp_rc_error Ss_sgp_re_not_found Storage group not found
SS_sgp_rc_warning ss_sgp_re_offline Already stopped or stop in progress
SS_sgp_rc_error Ss_sgp_re_cv_fail Condition variable wait failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

Chapter 15. Function Descriptions 321

ssSgpWrite

ssSgpWrite — Write a Storage Group

ssSgpWrite

retcode

reascode
storage_group_number
starting_block
block_count

buffer_alet

buffer

Purpose

Operands

Writes one or more blocks to a storage group.

ssSgpWrite
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssSgpWrite.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssSgpWrite.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of
the storage group to which blocks should be written.

starting_block
(input,INT,4) is a signed four-byte binary input variable holding the starting
block number of the block extent to be written.

block count
(input,INT,4) is a signed four-byte binary input variable holding the number of
blocks to be written.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be
used when referring to buffer.

buffer
(input,CHAR,4096*block_count) is a character string holding the data to be
written to the storage group.

322 z/VM V3R1.0 RSK Programmer's Guide and Reference

Usage Notes

6.

ssSgpWrite

. The first block of the storage group is block 0.

. This entry point can be used only if the storage group is online with attribute

Ss_sgp_attrib_block_rw.

. This entry point does not serialize access to storage groups. If your application

performs storage group 1/O on multiple threads, it is possible that the /0O might
happen in parallel, especially in MP situations. It is the application developer's
responsibility to implement any serialization paradigms required.

. When VM Data Spaces are used, the transfer from the source space to the

storage group's data space is done with PSW key 0.

. When a CP DIAGNOSE is used, CP is instructed to use key 0 in the channel

programs it builds.

If DIAG X'A4' is being used for storage group 1/O, buffer_alet must be 0.

Messages and Return Codes

Return Code
SS_Sgp_rc_success
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error

SS_sgp_rc_error

Reason Code Meaning

SS_sgp_re_success ssSgpWrite completed successfully

ss_sgp_re_mx_fail Mutex acquisition failed

ss_sgp_re_not_found Storage group not found

ss_sgp_re_out_of_range Extent is not within storage group size

ss_sgp_re_wrong_mode Storage group is not started for read-write block
/0

ss_sgp_re_io_falil Requested write failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

Chapter 15. Function Descriptions 323

ssTrieCreate

ssTrieCreate — Create a Trie

ssTrieCreate

retcode
reascode
triename
triesize
trieasit
triealet

Purpose

Operands

Usage Notes

Creates a trie.

ssTrieCreate
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssTrieCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssTrieCreate.

triename
(input,CHAR,8) is a character string holding the name of the new trie.

triesize
(input,INT,4) is a signed four-byte binary input variable holding the size of the
new trie's data space, in pages.

trieasit
(output,CHAR,8) is a character string to hold the ASIT of the data space for the
new trie.

triealet
(output,INT,4) is a signed four-byte binary output variable to hold the ALET
associated with the new trie's data space.

1. The name supplied in parameter triename is used unchanged as a subpool
name in a call to ssMemoryCreateDS. The server author must ensure that this
name does not collide with any subpool names he might be using for other
purposes.

2. The caller should specify parameter triesize in pages. The reusable server
kernel passes triesize directly to ssMemoryCreateDS.

3. The reusable server kernel creates the new trie in a data space and returns the
data space's ASIT and ALET to the caller.

324 z/VvM V3R1.0 RSK Programmer's Guide and Reference

Messages and Return Codes

Return Code Reason Code
ss_tri_rc_success ss_tri_re_success
ss_tri_rc_error ss_tri_re_bad_size
ss_tri_rc_error ss_tri_re_trie_exists
Ss_tri_rc_error ss_tri_re_out_of_storage
Ss_tri_rc_error ss_tri_re_dscr_fail

Programming Language Bindings

Language Language Binding File
Assembler SSASMTRI MACRO
PL/X SSPLXTRI COPY

ssTrieCreate

Meaning
ssTrieCreate completed successfully

triesize <0 or >524288

Trie triename already exists
Out of storage
Call to ssMemoryCreateDS failed

Chapter 15. Function Descriptions

325

ssTrieDelete

ssTrieDelete — Delete a Trie

ssTrieDelete
retcode
reascode
triename

Pu rpose
Deletes a trie.

Operands
ssTrieDelete
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssTrieDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssTrieDelete.

triename
(input,CHAR,8) is a character string holding the name of the trie to be deleted.

Usage Notes
1. This call results in the data space being deleted via call to ssMemoryDelete.

2. If your application has shared the trie's ASIT with other virtual machines, your
application is responsible for telling those other virtual machines about the
upcoming deletion prior to calling ssTrieDelete.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_tri_rc_success Ss_tri_re_success ssTrieDelete completed successfully
Ss_tri_rc_error ss_tri_re_trie_not_found Trie triename was not found

Ss_tri_rc_error Ss_tri_re_trie_busy Unable to acquire lock necessary to delete trie

Programming Language Bindings

Language Language Binding File
Assembler SSASMTRI MACRO
PL/X SSPLXTRI COPY

326 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssTrieRecordInsert

ssTrieRecordInsert — Insert Record Into Trie

ssTrieRecordInsert

retcode
reascode
triename
triealet
recnum
index_buffer
index_length

Purpose

Operands

Inserts the record number into the trie, using the specified key.

ssTrieRecordInsert
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssTrieRecordInsert.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssTrieRecordInsert.

triename
(input,CHAR,8) is a character string holding the name of the trie into which the
record is to be inserted.

triealet
(input,INT,4) is a signed four-byte binary input variable holding the ALET of the
data space in which the trie resides.

recnum
(input,INT,4) is a signed four-byte binary input variable holding the record
number to be inserted into the trie.

index_buffer
(input,CHAR,index_length) is a character string holding the index of the record
being inserted.

index_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
index_buffer.

Chapter 15. Function Descriptions 327

ssTrieRecordInsert

Usage Notes
1. If your virtual machine created the trie, you may use either the trie name or the
trie ALET value to identify the trie. If triealet is nonzero the reusable server
kernel will use your ALET directly. To refer to your trie by name, set triealet to
zero and use input triename to specify the name of your trie.

2. If your virtual machine did not create the trie (that is, if the creator passed you
the trie ASIT and you generated the ALET yourself), you must use parameter
triealet to pass the reusable server kernel the ALET you generated for the trie.
In this case, what you pass via triename is irrelevant.

3. The index string must not be longer than 256 bytes.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_tri_rc_success ss_tri_re_success ssTrieRecordInsert completed successfully
Ss_tri_rc_error ss_tri_re_bad_index_len Index string has improper length
Ss_tri_rc_error ss_tri_re_trie_not_found Trie triename was not found

Ss_tri_rc_error Ss_tri_re_trie_busy Unable to acquire lock necessary to update trie
Ss_tri_rc_error ss_tri_re_out_of_ds_storage The data space is full

Programming Language Bindings

Language Language Binding File
Assembler SSASMTRI MACRO
PL/X SSPLXTRI COPY

328 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssTrieRecordList

ssTrieRecordList — List Matching Records

ssTrieRecordList

retcode

reascode

triename

triealet

index_buffer
index_length
rechum_array
rechnum_array_capacity
records_found

Purpose

Operands

Generates a list of all the record numbers whose keys match the specified prefix.

ssTrieRecordList
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssTrieRecordList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssTrieRecordList.

triename
(input,CHAR,8) is a character string holding the name of the trie to be
interrogated.

triealet
(input,INT,4) is a signed four-byte binary input variable holding the ALET of the
data space in which the trie resides.

index_buffer
(input,CHAR,index_length) is a character string holding the key prefix to be
used in the lookup.

index_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
index_buffer.

recnum_array
(output,INT,4*recnum_array_capacity) is an array of signed four-byte binary
output variables to hold the record numbers whose keys match the supplied
prefix.

Chapter 15. Function Descriptions 329

ssTrieRecordList

rechum_array_capacity
(input,INT,4) is a signed four-byte binary input variable holding the size of
recnum_array.

records_found
(output,INT,4) is a signed four-byte binary output variable to hold the number of
record numbers found.

Usage Notes
1. If your virtual machine created the trie, you may use either the trie name or the
trie ALET value to identify the trie. If triealet is nonzero the reusable server
kernel will use your ALET directly. To refer to your trie by name, set triealet to
zero and use input triename to specify the name of your trie.

2. If your virtual machine did not create the trie (that is, if the creator passed you
the trie ASIT and you generated the ALET yourself), you must use parameter
triealet to pass the reusable server kernel the ALET you generated for the trie.
In this case, what you pass via triename is irrelevant.

3. The index string must not be longer than 256 bytes.

4. The reusable server kernel examines the trie and determines the set of record
numbers whose keys' prefixes match the prefix you specified in index_buffer. It
then writes the record numbers to the recnum_array array.

5. If there are more matching records than recnum_array can hold, the reusable
server kernel fills recnum_array to capacity, writes the actual number of
matching records to records_found, and returns success. You must always
examine records_found to determine whether your array was large enough.

Messages and Return Codes

Return Code Reason Code Meaning

ss_tri_rc_success ss_tri_re_success ssTrieRecordList completed successfully
ss_tri_rc_error ss_tri_re_bad_index_len Index string has improper length
ss_tri_rc_error ss_tri_re_bad_capacity_len recnum_array_capacity must be >= 0
ss_tri_rc_error ss_tri_re_trie_not_found Trie triename was not found

ss_tri_rc_error ss_tri_re_trie_busy Unable to acquire lock necessary to update trie

Programming Language Bindings

Language Language Binding File
Assembler SSASMTRI MACRO
PL/X SSPLXTRI COPY

330 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssUseridMap

ssUseridMap — Produce Mapped User ID

ssUseridMap

retcode

reascode

linedriver
linedriver_length
input_node
input_node_length
input_userid
input_userid_length
output_userid
output_userid_length

Purpose

Operands

Maps line-driver-specific information through the user ID mapping file.

ssUseridMap
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssUseridMap.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssUseridMap.

linedriver
(input,CHAR,linedriver_length) is a character string holding the name of the line
driver.

linedriver_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
linedriver.

input_node
(input,CHAR,input_node_length) is a character string holding the input node for
the mapping function.

input_node_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
input_node.

input_userid
(input,CHAR,input_userid_length) is a character string holding the input user ID
for the mapping function.

input_userid_length
(input,INT,4) is a signed four-byte binary input variable holding the length of
input_userid.

Chapter 15. Function Descriptions 331

ssUseridMap

output_userid
(output,CHAR,64) is a character string to hold the output of the mapping
function.

output_userid_length
(output,INT,4) is a signed four-byte binary output variable to hold the length of
the retrieved user ID.

Usage Notes
1. The reusable server kernel maps the triplet (linedriver,input_node,input_userid)
through the user ID mapping file and returns the resultant user identifier.

2. For more information about the organization and use of the user ID mapping
file, see “User ID Mapping Facility” on page 78.

Messages and Return Codes

Return Code Reason Code Meaning
Ss_uid_rc_success Ss_uid_re_success ssUseridMap completed successfully
Ss_uid_rc_error ss_uid_re_not_found No matching entry in user ID mapping file

Programming Language Bindings

Language Language Binding File
Assembler SSASMUID MACRO
PL/X SSPLXUID COPY

332 z/VM V3R1.0 RSK Programmer's Guide and Reference

ssWorkerAllocate

ssWorkerAllocate — Allocate Connection to Worker Machine

ssWorkerAllocate

retcode

reascode
instance_C-block
class_name
option_count
option_names
option_values
worker_C-block
connection_ID

Purpose

Operands

Allocates a connection to a worker machine, autologging a worker if necessary.

ssWorkerAllocate
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return
code from ssWorkerAllocate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason
code from ssWorkerAllocate.

instance_C-block
(input,POINTER,4) is a pointer holding the address of the C-block previously
created for the calling instance by its own line driver.

class_name
(input,CHAR,8) is a character string holding the name of the class from which a
worker machine should be selected.

option_count
(input,INT,4) is a signed four-byte binary input variable holding the humber of
elements in the option_names and option_values arrays.

option_names
(input,INT,4*option_count) is an array of signed four-byte binary input variables
holding option names.

option_values
(input,INT,4*option_count) is an array of signed four-byte binary input variables
holding option values.

worker_C-block
(output,POINTER,4) is a pointer to hold the address of the returned worker
C-block, constructed by the server kernel to represent the connection between
the instance and the selected worker.

Chapter 15. Function Descriptions 333

ssWorkerAllocate

Usage Notes

connection_ID

(output,INT,4) is a signed four-byte binary output variable to hold the returned
connection ID.

. Input instance_C-block is the address of the C-block assigned to the instance

by its line driver. This value was passed to the instance in its own parameter
list when the instance was started.

. The worker class class_name should correspond to a class defined through the

WORKER ADD command. If the class has not yet been created through WORKER
ADD, an error is returned.

. Case is significant in class names.

. The option_names array can contain any of these values:

ss_wrk_ofn_prefer_empty The corresponding entry in the option_values array
controls how the server kernel will search for an
available worker, as follows:

ss_wrk_ofv_yes The server kernel will search for
empty or not-yet-logged-on worker
machines first and direct the
connection to one of those. If no
such worker is found the server
kernel will determine the least
burdened worker and direct the
connection to it.

ss_wrk_ofv_no The server kernel will search the
already-logged-on workers,
determine the least burdened one,
and direct the connection to it. If
no workers are logged on yet, or if
all logged-on workers are full, the
server kernel will autolog another
worker and direct the connection to
it.

ss_wrk_ofn_retry_count The corresponding value in the option_values array
is the number of worker machines the server kernel
should try before it gives up. Specifying a count of
zero means that the server kernel should try until it
runs out of worker machine candidates.

ss_wrk_ofn_alt_userid The corresponding value in the option_values array
is a pointer to an 8-byte character string which is the
alternate user ID to use.

ss_wrk_ofn_alt_seclabel The corresponding value in the option_values array
is a pointer to an 8-byte character string which is the
alternate seclabel to use.

. The server kernel maintains status information about the workers in each class

and uses that status information when considering whether to try to connect to
a worker. The status information, an integer, indicates either that the worker
machine appears healthy or tells the reason why the last attempt to connect to

334 z/VvM V3R1.0 RSK Programmer's Guide and Reference

ssWorkerAllocate

the worker machine failed. For more information, see “WORKER MACHINES”
on page 214.

6. To be able to set a worker's alternate user ID and seclabel, the controlling
virtual machine must have permission to issue Diagnose X'D4'. See z/VM:
CP Programming Services for more information. If you attempt to use the
reusable server kernel's alternate user ID machinery and your virtual machine
does not have the privilege necessary to issue Diagnose X'D4', your virtual
machine will take a program check. It is your responsibility to recover from this.

7. The reusable server kernel always uses the subcode X'04' form of Diagnose
X'D4'.

8. If you specify an alternate seclabel, you must also specify an alternate user ID.
The reusable server kernel does not check this.

9. Output worker_C-block will contain the address of the C-block that describes
the connection from the instance to the worker. The instance should consult
this C-block for:

e The queue handle it should use when sending IPC messages to the server
kernel about this worker connnection

e The line driver key it should use when sending IPC messages to the server
kernel about this worker connection

10. The returned connection ID will appear in IPC messages arriving on the
instance's line driver queue. These messages, keyed with the instance's key,
are indicative of activity on the worker connection.

Messages and Return Codes

Return Code Reason Code Meaning

ss_wrk_rc_success ss_wrk_re_success ssWorkerAllocate completed successfully

ss_wrk_rc_error ss_wrk_re_out_of_storage Insufficient storage to connect to worker

ss_wrk_rc_error ss_wrk_re_bad_count Input option_count contains a negative value

ss_wrk_rc_error ss_wrk_re_bad_flag_name Input option_names contains an unrecognized
name

ss_wrk_rc_error ss_wrk_re_bad_flag_value Input option_values contains an unrecognized
value

ss_wrk_rc_error ss_wrk_re_no_class The class you requested does not exist

ss_wrk_rc_error ss_wrk_re_no_subordinates No worker machine could be found

ss_wrk_rc_error ss_wrk_re_algtries_exceeded The last worker machine tried was autologged
several times but the IUCV connection never
succeeded

ss_wrk_rc_error ss_wrk_re_autolog_fail The server kernel was unable to autolog the last
virtual machine it tried

ss_wrk_rc_error ss_wrk_re_timer_fail The server kernel tried to use the CMS Timer
API to set a timer but the Timer API failed

SS_wrk_rc_error ss_wrk_re_iucvcon_fail The server kernel encountered an unrecoverable

IUCV CONNECT error on the last worker virtual
machine it tried

ss_wrk_rc_error ss_wrk_re_force_fail The server kernel tried to CP FORCE a worker (to
reset it) but was unable to issue the FORCE
command

ss_wrk_rc_error ss_wrk_re_force_timeout The server kernel FORCEd a worker (to reset it)

but did not see the worker become logged off -
possible hung user

Chapter 15. Function Descriptions 335

ssWorkerAllocate

Return Code Reason Code
SS_wrk_rc_error ss_wrk_re_oper_delete

Programming Language Bindings

336

Language Language Binding File
Assembler SSASMWRK MACRO
PL/X SSPLXWRK COPY

z/VM V3R1.0 RSK Programmer's Guide and Reference

Meaning

While the server kernel was trying to bring up
the worker connection, the operator issued
WORKER DELETE or WORKER DELCLASS, thus
nullifying the connection attempt

RSK Sockets

 Chapter 16. RSK Sockets

The RSK socket library is a PL/X application programming interface for socket
programming. The library is a very thin layer over the IUCV socket interface and
can be used only within an RSK program.> While the RSK socket library does not
provide a correspondent for every IUCV socket function, it provides many of the
basic operations necessary to communicate with other socket programs. The RSK
socket library also provides some RSK-specific functions.

The RSK socket library is aware of multitasking CMS and integrates well with it.
For example, when a socket operation blocks, only the calling thread blocks.
Further, the library offers extensions to traditional socket semantics, making
available asynchronous versions of often-used socket calls (such as write()). When
the caller performs an asynchronous socket operation, the completion notice arrives
as a message on a CMS queue.

Prerequisite Knowledge

This chapter assumes you have a working knowledge of the Reusable Server
Kernel. You will also need to be experienced in socket programming, such as from
having used IUCV sockets, C sockets, or Rexx/Sockets. To use the asynchronous
features of the RSK socket library, you will need to understand CMS interprocess
communication (IPC) as implemented by multitasking CMS's “queue” functions
(e.g., QueueReceiveBlock). Finally, you will need to know how to program in PL/X.

To use the RSK socket documentation effectively, you will need a copy of the
“IUCV Sockets” section of IBM z/VM: TCP/IP FL 3.2.0 Programmer’s Reference.
That material gives complete usage information for the IUCV socket APIl. The best
way to use this RSK socket library documentation is to refer to the RSK socket
documentation and the IUCV socket documentation side-by-side.

Available Functions

The following IUCV socket functions have correspondents in the RSK socket
interface:

Table 46 (Page 1 of 2). Socket Functions Available in RSK Library

IUCV socket function name RSK entry point name
accept() PS_accept()

bind() PS_bind()

close() PS_close()

connect() PS_connect()
gethostid() PS_gethostid()
getpeername() PS_getpeername()
getsockname() PS_getsockname()

25 That is, the callers of the RSK socket library entry points must adhere to the RSK linkage and automatic storage conventions.
See Chapter 11, “Run-Time Environment” on page 65 for more information.

© Copyright IBM Corp. 1999, 2001 337

RSK Sockets

Table 46 (Page 2 of 2). Socket Functions Available in RSK Library

IUCV socket function name

RSK entry point name

getsockopt() PS_getsockopt()
ioctl() PS_ioctl()
listen() PS_listen()
read() PS_read()
recvfrom() PS_recvfrom()
select() PS_select()
sendto() PS_sendto()
setsockopt() PS_setsockopt()
shutdown() PS_shutdown()
socket() PS_socket()

write()

PS_write()

The following additional functions are specific to the RSK socket library:

Table 47. Additional RSK-Specific Functions in Library

Function RSK entry point name
Library initialization PS_libinit()

Library termination PS_libterm()
Application initialization PS_applinit()

Application termination

PS_applterm()

Asynchronous read()

PS_async_read()

Asynchronous recvfrom()

PS_async_recv()

Asynchronous sendto()

PS_async_sendto()

Asynchronous write()

PS_async_write()

Cancel asynchronous operation

PS_cancel()

Programming with RSK Sockets

Programming with the RSK socket library involves the following steps:

1. In each of your PL/X compilation units that will use the RSK socket library, you
must include the RSK socket library language binding macro. To do so, put the
following statement into each compilation unit:

%include syslib(plxsock);

PLXSOCK COPY is in DMSRP MACLIB, which is part of the z/VM PL/X Restricted
Source Feature, which you can order as a feature of z/VM.

2. At run-time, your first step must be to initialize the RSK socket library. This
prepares the library to receive socket calls. To initialize the library, you must
either call PS_libinit() yourself or arrange for the RSK to call it. See “PS_libinit”

on page 364 for more information.

338 z/VM V3R1.0 RSK Programmer's Guide and Reference

RSK Sockets

3. To perform socket operations, you must create a socket set.?6 We call each

RSK socket set an application and hence the entry point you use for this is
PS_applinit().

You supply PS_applinit() with the name (VM user ID) of the TCP/IP stack
machine, a unique name for your new set of sockets, and the number of
sockets you want in the set.

PS_applinit() establishes the IUCV connection to the TCP/IP stack machine
and prepares the socket set for your use.

4. You perform operations on the sockets in your set. You use the RSK socket

library entry points to do so. For example, to allocate a new socket, you call
PS_socket(), or to write data to a socket, you call PS_write().

5. When you are done with your set of sockets, you dispose of it by calling

PS_applterm(), identifying the socket set by the unique name you chose for it
at its creation.

. Prior to your server ending, either you should call PS_libterm() or you should

arrange for the RSK to call it. See “PS_libterm” on page 366 for more
information.

Restrictions and Limitations

Be aware of the following restrictions and limitations when you use the RSK socket
library:

The RSK socket library uses storage subpool name DMSSBPS0. You should
refrain from using this subpool name.

The RSK socket library creates an HNDIUCV exit named DMSPLXSK. You
should refrain from using this HNDIUCV exit name.

The RSK socket library creates CMS semaphores whose names are of the
form DMSPLXSKxxxx, where xxxx is a hexadecimal number. You should refrain
from using semaphore names of these forms.

Each socket set may contain 50 to 2000 sockets, inclusive.

The RSK itself uses socket set names of the form Uxxxxxxx and TXXXXXXX,
where xxxxxxx is a hexadecimal number. You should refrain from using socket
set names of these forms.

You may create more than one named socket set concurrently. The absolute
limit on the number of socket sets the library can manage is set by call to
PS_libinit().2” This limit counts both socket sets you create yourself and RSK
UDP or TCP subtasks you have running in your server. Each such subtask
uses one socket set.

You may overlap operations on a socket set, but you should not overlap
operations on a single socket. For example, if you use PS_async_write() to
write data to a socket, you should not start another write to that socket until the
current write to that socket finishes.

26 In IUCV sockets, this step corresponds to establishing a connection to the TCP/IP stack machine and sending the initial message.
In Rexx/Sockets, this step corresponds to invoking Socket('Initialize').

27 When the RSK calls PS_libinit(), it sets the limit to 100.

Chapter 16. RSK Sockets 339

RSK Sockets

e When you call a synchronous socket operation (such as PS_write()), the calling
thread blocks until the operation completes. Other CMS threads might run
while the calling thread waits for the operation to complete. While the
synchronous operation is in progress, other threads are permitted to perform
operations on other sockets in that socket set and on other socket sets.

Data Structures

Certain data structures are important in socket programming. For example, the
16-byte structure containing the address of a new client (known to C programmers
as sockaddr_in) is used throughout the APIl. Here are some hypothetical PL/X
representations of those data structures. These representations are referred to in
the routines' descriptions below, but they are not provided in PLXSOCK COPY and are
here just for illustrative purposes.

Address Structure

/* sockaddr_in */

declare
1 sockaddr_in based boundary(word),
5 si_family fixed(15), /* address family */
5 si_port fixed(16), /* port number */
5 si_address fixed(32), /* IP address */
5 si_zero char(8); /* must be zero */

Timeout Structure

/* timeout structure for select() */

declare
1 timeval based boundary(word),
5 tv_sec fixed(31), /* seconds %/
5 tv_usec fixed(31); /* microseconds */

Notes on PLXSOCK COPY

The language binding file PLXSOCK COPY contains constant definitions, structure
definitions, and function prototypes. Some notes on each:

Constants
Certain (but certainly not all) constants relevant to socket programming appear in
PLXSOCK COPY. When the library requires you to supply a constant (such as
AF_INET), check the binding to see if a symbolic name is available. If there is no
symbolic name, you will have to make up your own.

340 z/VM V3R1.0 RSK Programmer's Guide and Reference

RSK Sockets

| Structures

| PLXSOCK COPY contains definitions for certain structures commonly used in socket
| programming. Feel free to use these structures if you find them helpful.

| Function Prototypes
| PLXSOCK COPY contains function prototypes for each RSK socket library entry point.

| Return Codes and ERRNO Values

| By and large, the return code values and errno values returned by the RSK socket
| library correspond exactly to the values returned by the IUCV socket API. The
| following exceptions apply:

| e Some entry points unique to the RSK socket library (such as PS_applinit())
| supply a return and reason code. The descriptions below list the return and
| reason codes that might be produced.

| ¢ The RSK socket library defines additional errno values not found in the IUCV
| socket API. These errno values come from the additional complexity in the
| RSK socket library. Their symbolic names and meanings are:

| Name Meaning

| EIBMIUCVERR Some kind of IUCV error occurred

| EIBMLIBERR The RSK socket library is not initialized

| EIBMNOAPPL The socket set you named does not exist
| EIBMNOSOCKAVAIL No sockets available in socket set

| EIBMBADKEYLEN Notify key length is invalid

| EIBMNOSTORAGE No storage available

| EIBMBADBUFLEN A supplied buffer length is invalid

| EIBMBADPARM Timeout buffer length is invalid

| Any of the RSK socket library routines having errno as an output might produce
| some of these errno values.

| RSK Socket Calls

| This section provides the PL/X language syntax, parameters, and other appropriate
| information for each socket call the RSK supports.

The parameter lists and syntax for each routine are illustrated with PL/X snippets.
These snippets are not verbatim examples you can compile and run. They just
show the data type of each parameter list entry, whether the item is input () or
output (O), and how to code the CALL statement to invoke the function.

| Usage notes here are confined to explaining particulars of the RSK socket API. As

| a result, the information here is intentionally terse. Again, refer to “lIUCV Sockets”
| in IBM z/VM: TCP/IP FL 3.2.0 Programmer’s Reference.

Chapter 16. RSK Sockets 341

PS_accept

| PS_accept
| Purpose
| Performs socket accept() function.
[PL/X lllustration
| %include syslib(plxsock);
| /* parameter data types =*/
| declare
| applname char(8),
| 1socket fixed(31),
| addrbufptr pointer(31),
| addrbufsize fixed(31),
| addrlen fixed(31),
| socket fixed(31),
| errno fixed(31);
I /* how to call */
| call PS_accept
| (
| applname, /* I: application name */
| 1socket, /* I: Tlisten socket */
| addrbufptr, /* 1: address buffer pointer =/
| addrbufsize, /* I: address buffer size */
| addrlen, /* 0: address length %/
| socket, /* 0: new socket number */
| errno /* 0: ERRNO */
I)s
[Parameters
| Parameter Definition
| applname Name of socket set
| Isocket Socket you listened on
| addrbufptr Pointer to buffer into which API should place a
| completed sockaddr_in structure
| addrbufsize Size of said buffer
| addrlen Returned length of sockaddr_in structure
| socket Socket number for new connection
| errno Returned ERRNO value
| Reason Codes
| Not applicable.
[Usage Notes
I None.
342 z/VM V3R1.0 RSK Programmer's Guide and Reference

| PS_applinit

Purpose

Creates a socket set.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types =/

declare
rc fixed(31),
re fixed(31),
tcpname char(8),
applname char(8),
numwanted fixed(31),

numgotten fixed(31);

/* how to call =/
call PS_applinit
(

rc,

re,

tcpname,
applname,
numwanted,
numgotten

)’

Parameters
Parameter

rc

re

tcpname
applname
numwanted
numgotten

Reason Codes
Reason Code

sok _re bad _ns
sok_re_dup_appl
sok_re_ic_fail
sok_re_bad_inttype
sok_re_is_fail
sok_re_diff_ns

Usage Notes

/*

/*
/*
/*
/*

O - - - O O

return code

reason code

name of TCP/IP stack
appl name to use

num of sockets wanted
num of sockets gotten

Definition
Return code
Reason code

User ID of TCP/IP stack machine

Name for new socket set

*/

*/
*/
*/
*/

PS_applinit

Number of sockets wanted (50 to 2000)

Number of sockets gotten

Meaning
numwanted is out of range
applname already in use

IUCV CONNECT to stack failed

Stack responded improperly to CONNECT

IUCV SEND to stack failed
numgotten == numwanted

1. If you get a warning return code and you get reason code sok_re_diff_ns, you
may proceed to use the socket set, recognizing you did not get as many

sockets as you requested.

Chapter 16. RSK Sockets 343

PS_applinit

2. If you get an error return code and you get reason code sok_re_diff_ns, the
socket set was not created because the TCP/IP stack tried to give you more
sockets than you requested.

344 z/vM V3R1.0 RSK Programmer's Guide and Reference

| PS_applterm

Purpose
Terminates a socket set.

PL/X Illustration
%include syslib(plxsock);

/* parameter data types =/
declare

rc fixed(31),
re fixed(31),
applname char(8);

/* how to call =/
call PS_applterm

(

rc, /* 0:
re, /* 0:
/* 1:

applname

)s

Parameters
Parameter

rc

re

applname

Reason Codes
Reason Code
sok_re_no_appl

Usage Notes
None.

PS_applterm

return code */

reason code */

set to terminate */
Definition

Return code
Reason code
Name of socket set to terminate

Meaning
Application not found

Chapter 16. RSK Sockets

345

PS_async_read

| PS_async_read

| Purpose
| Starts a read of a socket. The library sends an IPC message when the read
| completes.

| PL/X lllustration
| %include syslib(plxsock);

/* parameter data types */

declare
applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),

nghandle fixed(31),
nkpointer pointer(31),
nklength fixed(31),

xid fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */
call PS_async_read

I

I

| (

| applname, /* I: application name */
| socket, /* 1: socket to read */
| bufpointer, /* 1: pointer to read buffer =/
[bufsize, /* I: size of read buffer */
| nghandle, /* I: handle of notify queue =*/
| nkpointer, /* I: pointer to notify key */
| nklength, /* 1: length of notify key */
| xid, /* 0: transaction ID */
| rc, /* 0: return code */
| errno /* 0: ERRNO %/
I)s

| Parameters

[Parameter Definition

| applname Name of socket set

| socket Socket to read

| bufpointer Pointer to buffer to be filled

| bufsize Amount of data wanted

| nghandle Handle of notify queue

| nkpointer Pointer to key for notify message
| nklength Length of notify message

I xid Transaction ID

| rc Return code

| errno Returned ERRNO

346 z/VM V3R1.0 RSK Programmer's Guide and Reference

PS_async_read

Reason Codes
Not applicable.

Usage Notes
1. The handle for the notify queue must be a service ID. In other words, the
gueue in which the notification is to be placed must be a service queue. You
must have already arranged for this by calling QueueldentifyService.

2. The notification message you see in the service queue will be the
concatenation of your notify key and the following extra data:

Offset.Length Usage

0.4 Return code
4.4 Errno

8.16 Unused

3. The message will be sent with your notify key as its key.

4. If you need to cancel the operation before it completes, use the returned
transaction ID in a call to PS_cancel().

Chapter 16. RSK Sockets 347

PS_async_recv

| PS_async_recv

| Purpose
| Starts a receive of a datagram. The library sends an IPC message when the
| receive completes.

| PL/X lllustration
| %include syslib(plxsock);

/* parameter data types */

declare
applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),

flagword fixed(31),
nghandle fixed(31),
nkpointer pointer(31),
nklength fixed(31),

xid fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */
call PS_async_recv

I

I

| (

[appTname, /* 1: application name */
| socket, /* I: socket to receive on */
| bufpointer, /* I: pointer to recv buffer =*/
| bufsize, /* I: size of recv buffer */
| flagword, /* 1: flag word */
| nghandle, /* 1: handle of notify queue =*/
| nkpointer, /* I: pointer to notify key =*/
| nklength, /* 1: length of notify key */
| xid, /* 0: transaction ID %/
| rc, /* 0: return code */
| errno /* 0: ERRNO */
I)s

[Parameters

| Parameter Definition

| applname Name of socket set

| socket Socket to receive on

| bufpointer Pointer to buffer to be filled

| bufsize Amount of data wanted

| flagword Flag word

| nghandle Handle of notify queue

| nkpointer Pointer to key for notify message
| nklength Length of notify message

| xid Transaction ID

| rc Return code

| errno Returned ERRNO

348 z/VM V3R1.0 RSK Programmer's Guide and Reference

PS_async_recv

Reason Codes
Not applicable.

Usage Notes
1. See the IUCV socket library documentation for definition of the flag word.

2. The handle for the notify queue must be a service ID. In other words, the
gueue in which the notification is to be placed must be a service queue. You
must have already arranged for this by calling QueueldentifyService.

3. The notification message you see in the service queue will be the
concatenation of your notify key and the following extra data:

Offset.Length Usage

0.4 Return code

4.4 Ermo

8.16 sockaddr_in describing message source

4. The message will be sent with your notify key as its key.

5. If you need to cancel the operation before it completes, use the returned
transaction ID in a call to PS_cancel().

Chapter 16. RSK Sockets 349

PS_async_sendto

| PS_async_sendto

| Purpose
| Starts a send of a datagram. The library sends an IPC message when the send
| completes.

| PL/X lllustration
| %include syslib(plxsock);

/* parameter data types */

|

| declare

| applname char(8),

| socket fixed(31),

| bufpointer pointer(31),
| bufsize fixed(31),

[flagword fixed(31),

| addrbufptr pointer(31),
| addrbufsize fixed(31),

| nghandle fixed(31),

| nkpointer pointer(31),
| nklength fixed(31),

| xid fixed(31),

| rc fixed(31),

| errno fixed(31);

/* how to call =/

I

| call PS_async_sendto

| (

| applname, /* 1: application name */
| socket, /* I: socket to send on */
| bufpointer, /* 1: pointer to data buffer =/
| bufsize, /* I: size of data buffer */
| flagword, /* I: flag word */
| addrbufptr, /* 1: pointer to addr buffer =/
| addrbufsize, /* I: size of addr buffer */
| nghandle, /* I: handle of notify queue =*/
| nkpointer, /* I: pointer to notify key =*/
| nklength, /* I: 1length of notify key */
| xid, /* 0: transaction ID */
| rc, /* 0: return code */
[errno /* 0: ERRNO */
I)s

| Parameters

| Parameter Definition

| applname Name of socket set

| socket Socket to send on

| bufpointer Pointer to data buffer

| bufsize Length of data buffer

| flagword Flag word

| addrbufptr Pointer to sockaddr_in structure
| addrbufsize Length of sockaddr_in structure
| nghandle Handle of notify queue

350

z/VM V3R1.0 RSK Programmer's Guide and Reference

PS_async_sendto

nkpointer Pointer to key for notify message
nklength Length of notify message

xid Transaction ID

rc Return code

errno Returned ERRNO

Reason Codes
Not applicable.

Usage Notes
1. See the IUCV socket library documentation for definition of the flag word.

2. The handle for the notify queue must be a service ID. In other words, the
gueue in which the notification is to be placed must be a service queue. You
must have already arranged for this by calling QueueldentifyService.

3. The notification message you see in the service queue will be the
concatenation of your notify key and the following extra data:

Offset.Length Usage

0.4 Return code
4.4 Errno

8.16 Unused

4. The message will be sent with your notify key as its key.

5. If you need to cancel the operation before it completes, use the returned
transaction ID in a call to PS_cancel().

Chapter 16. RSK Sockets 351

PS_async_write

| PS_async_write

| Purpose
| Starts a write to a socket. The library sends an IPC message when the write
| completes.

| PL/X lllustration
| %include syslib(plxsock);

/* parameter data types */

declare
applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),

nghandle fixed(31),
nkpointer pointer(31),
nklength fixed(31),

xid fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */
call PS_async_write

I

I

| (

| applname, /* I: application name */
| socket, /* 1: socket to write to */
| bufpointer, /* 1: pointer to data buffer =/
[bufsize, /* I: size of data buffer */
| nghandle, /* I: handle of notify queue =*/
| nkpointer, /* I: pointer to notify key */
| nklength, /* 1: length of notify key */
| xid, /* 0: transaction ID */
| rc, /* 0: return code */
| errno /* 0: ERRNO %/
I)s

| Parameters

[Parameter Definition

| applname Name of socket set

| socket Socket to write to

| bufpointer Pointer to data buffer

| bufsize Length of data buffer

| nghandle Handle of notify queue

| nkpointer Pointer to key for notify message
| nklength Length of notify message

I xid Transaction ID

| rc Return code

| errno Returned ERRNO

352 z/VM V3R1.0 RSK Programmer's Guide and Reference

PS_async_write

Reason Codes
Not applicable.

Usage Notes
1. The handle for the notify queue must be a service ID. In other words, the
gueue in which the notification is to be placed must be a service queue. You
must have already arranged for this by calling QueueldentifyService.

2. The notification message you see in the service queue will be the
concatenation of your notify key and the following extra data:

Offset.Length Usage

0.4 Return code
4.4 Errno

8.16 Unused

3. The message will be sent with your notify key as its key.

4. If you need to cancel the operation before it completes, use the returned
transaction ID in a call to PS_cancel().

Chapter 16. RSK Sockets 353

PS_bind

. PS_bind

Purpose
Performs bind() function.

PL/X Illustration
%include syslib(plxsock);

/* parameter data types =/
declare

applname char(8),
socket fixed(31),
addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */
call PS_bind

(

applname, /*
socket, /*
addrbufptr, /*
addrbufsize, /*
rc, /*
errno /*

)s

Parameters
Parameter
applname
socket
addrbufptr
addrbufsize
rc

errno

Reason Codes
Not applicable.

Usage Notes
None.

354 z/vM V3R1.0 RSK Programmer's Guide and Reference

O O b

application name
socket for bind
address buffer pointer
address buffer size
return code

ERRNO

Definition
Name of socket set
Socket for bind

Pointer to your built sockaddr_in structure
Length of your sockaddr_in structure

Return code
Returned ERRNO value

*/

*/
*/
*/
*/

| PS_cancel

Purpose
Cancels an asynchronous RSK socket function.

PL/X Illustration
%include syslib(plxsock);

/* parameter data types =/

declare
applname char(8),
xid fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call =/
call PS_cancel

(

applname, /* I: application name
xid, /* I: transaction to cancel
rc, /* 0: return code

errno /* 0: ERRNO

)

Parameters

Parameter Definition

applname Name of socket set

xid Transaction to cancel
rc Return code

errno Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes
None.

*/
*/
*/
*/

PS cancel

Chapter 16. RSK Sockets 355

PS close

| PS _close

Purpose
Performs close() function.

PL/X Illustration
%include syslib(plxsock);

/* parameter data types =/

declare
applname char(8),
socket fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */
call PS _close

(

applname, /* I: application name
socket, /* I: socket to close
rc, /* 0: return code
errno /* 0: ERRNO

)

Parameters

Parameter Definition

applname Name of socket set

socket Socket to close

rc Return code

errno Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes
None.

356 z/VM V3R1.0 RSK Programmer's Guide and Reference

*/
*/
*/
*/

| PS_connect

Purpose
Performs connect() function.

PL/X Illustration
%include syslib(plxsock);

/* parameter data types =/

declare
applname char(8),
socket fixed(31),

addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call =/
call PS_connect

PS connect

(

applname, /* I: application name */
socket, /* 1: socket to use */
addrbufptr, /* 1: pointer to sockaddr in =*/
addrbufsize, /* I: length of sockaddr_in */
rc, /* 0: return code */
errno /* 0: ERRNO */
)s

Parameters

Parameter Definition

applname Name of socket set

socket Socket to close

addrbufptr Pointer to sockaddr_in describing target

addrbufsize Length of sockaddr_in

rc Return code

errno Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes
None.

Chapter 16. RSK Sockets 357

PS_gethostid

| PS_gethostid

358

Purpose
Performs gethostid() function.

PL/X Illustration
%include syslib(plxsock);

/* parameter data types =/
declare

applname char(8),
hostid fixed(31),
errno fixed(31);

/* how to call =/
call PS _gethostid
(

applname,
hostid,
errno

)s

Parameters
Parameter
applname
hostid

errno

Reason Codes
Not applicable.

Usage Notes
None.

z/VM V3R1.0 RSK Programmer's Guide and Reference

/* 1:
/* 0:
/* 0:

application name
host ID
ERRNO

Definition

Name of socket set
Returned host ID
Returned ERRNO value

*/
%/
x/

| PS_getpeername

Purpose

Performs getpeername() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types =/

declare
applname

char(8),
socket fixed(31),

addrbufptr pointer(31),

addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call =/
call PS_getpeername

(
applname,
socket,
addrbufptr,
addrbufsize,
rc,
errno

)s

Parameters
Parameter
applname
socket
addrbufptr
addrbufsize
rc

errno

Reason Codes
Not applicable.

Usage Notes
None.

/*

/*
/*
/*
/*

O O o -

application name
socket number

pointer to sockaddr in
Tength of sockaddr_in
return code

ERRNO

Definition
Name of socket set
Socket number

PS_getpeername

*/

*/
*/
*/
*/

Pointer to buffer to contain sockaddr_in

Length of sockaddr_in
Return code
Returned ERRNO value

Chapter 16. RSK Sockets 359

PS_getsockname

| PS_getsockname

Purpose

Performs getsockname() function.

PL/X Illustration
%include syslib(plxsock);

/* parameter data types =*/
declare
applname char(8),
socket fixed(31),
addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call =*/
call PS_getsockname

(

applname, /*
socket, /*
addrbufptr, /*
addrbufsize, /*
rc, /*
errno /*

)s

Parameters
Parameter
applname
socket
addrbufptr
addrbufsize
rc

errno

Reason Codes
Not applicable.

Usage Notes
None.

z/VM V3R1.0 RSK Programmer's Guide and Reference

O O b

application name
socket number

pointer to sockaddr in
Tength of sockaddr_in
return code

ERRNO

Definition
Name of socket set
Socket number

Pointer to buffer to contain sockaddr _in

Length of sockaddr_in
Return code
Returned ERRNO value

*/

*/
*/
*/
*/

| PS_getsockopt

Purpose

Performs getsockopt() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types =/

declare
applname
socket
level
optname
optvalptr
optvalbufsize
rc
errno

/* how to call */
call PS_getsockopt

(
applname,
socket,
level,
optname,
optvalptr,
optvalbufsize,
rec,
errno

)s

Parameters
Parameter
applname
socket

level
optname
optvalptr
optvalbufsize
rc

errno

Reason Codes
Not applicable.

Usage Notes
None.

char(8),

fixed(31),
fixed(31),
fixed(31),
pointer(31),
fixed(31),
fixed(31),
fixed(31);

/*
/*
/*
/*

/*
/*
/*

O O o o -

application name */
socket number */
Tevel setting */
option name */
pointer to value buffer =*/
Tength of value buffer =*/
return code */
ERRNO */
Definition

Name of socket set
Socket number
Option level

PS_getsockopt

Name of option being interrogated

Pointer to buffer for option value

Size of buffer for option value

Return code

Returned ERRNO value

Chapter 16. RSK Sockets 361

PS ioctl

| PS_ioctl

Purpose

Performs ioctl() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data
declare
applname
socket
command
argstrptr
argstrlen
respbufptr
respbufsize
rc

errno

/* how to call =/
call PS_ioctl
(

applname,
socket,
command,
argstrptr,
argstrien,
respbufptr,
respbufsize,
rc,

errno

)s

Parameters
Parameter
applname
socket
command
argstrptr
argstrlen
respbufptr
respbufsize
rc

errno

Reason Codes
Not applicable.

types */

char(8),

fixed(31),

fixed(31),

pointer(31),

fixed(31),

pointer(31),

fixed(31),

fixed(31),

fixed(31);
/* I: application name
/* 1: socket number
/* I: octl command
/* I: pointer to arg string
/* 1: length of arg string
/* 1: pointer to resp buffer
/* 1: size of resp buffer
/* 0: return code
/* 0: ERRNO

Definition

Name of socket set
Socket number

ioctl() command

Pointer to argument string
Length of argument string
Pointer to response buffer
Size of response buffer
Return code

Returned ERRNO value

362 z/VM V3R1.0 RSK Programmer's Guide and Reference

*/
*/
*/

*/
*/
*/
*/
*/

PS ioctl

Usage Notes
None.

Chapter 16. RSK Sockets 363

PS_libinit

. PS_libinit
Purpose
Initializes the RSK socket library.
PL/X lllustration
%include syslib(plxsock);
/* parameter data types =*/
declare
rc fixed(31),
re fixed(31),
numofapps fixed(31);
/* how to call =/
call PS Tibinit
(
rc, /* 0: return code */
re, /* 0: reason code */
numofapps /* I: number of applications =*/
)s
Parameters
Parameter Definition
rc Return code
re Reason code
numofapps Number of concurrent applications
Reason Codes
Reason Code Meaning
sok_re_success Function worked correctly
sok_re_already Socket library already initialized
sok_re_bad_appl_count numofapps is out of range
sok_re_out_of_storage Insufficient storage
sok_re_hs_fail HNDIUCV SET failed
sok_re_sc_fail SemCreate failed
Usage Notes
1. You need to coordinate your use of PS_libinit() with the RSK's TCP and UDP
line drivers.
The obijective in such coordination is to make sure that if the RSK decides to
call PS_libinit(), its call will work. (Most service levels of the RSK cannot
tolerate failure of a call to PS_libinit().)
If you plan never ever to use any of the IP functions in the RSK, you will
definitely need to call PS_libinit() exactly once to initialize the RSK socket
library, so you should go ahead and issue the call before you issue any other
RSK socket calls.
However, if your server starts the TCP or UDP line drivers (for example, SUBCOM
START UDP appears in your PROFILE RSK), then you should refrain from calling
PS_libinit() because the RSK will do so as part of initializing those line drivers.
364 z/VM V3R1.0 RSK Programmer's Guide and Reference

PS_libinit

If the latter is your situation, you can assume that the RSK has initialized the
socket library as soon as control returns from the first START of the TCP or UDP
line driver (e.g., SUBCOM START TCP in PROFILE RSK).

Chapter 16. RSK Sockets 365

| PS_libterm

PS libterm

366

Purpose
Terminates the RSK socket library.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types =/

declare
rec fixed(31),
re fixed(31),
/* how to call x/
call PS_Tibterm
(
rc, /* 0: return code */
re /* 0: reason code */
)s
Parameters
Parameter Definition
rc Return code
re Reason code
Reason Codes
Reason Code Meaning
sok_re_success Function worked correctly

Usage Notes
1. You need to coordinate your use of PS_libterm() with the RSK's TCP and UDP

line drivers.

The objective in such coordination is to make sure that you do not terminate
the socket library prior to the RSK's being ready for it to be terminated.

If you plan never ever to use any of the IP functions in the RSK, you will
definitely need to call PS_libinit() exactly once to terminate the RSK socket
library, so you should go ahead and issue the call after you are all done issuing
other RSK socket calls.

However, if your server starts the TCP or UDP line drivers (for example, SUBCOM
START UDP appears in your PROFILE RSK), then you should refrain from calling
PS_libterm() because the RSK will do so as part of terminating those line
drivers.

The RSK will terminate the TCP and UDP line drivers only after all of your
instance threads have terminated.

z/VM V3R1.0 RSK Programmer's Guide and Reference

| PS_listen

Purpose

Performs listen() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data
declare

applname

socket

queuesize

rc

errno

/* how to call */
call PS_listen
(

applname,
socket,
queuesize,
rc,

errno

)s

Parameters
Parameter
applname
socket
gueuesize

rc

errno

Reason Codes
Not applicable.

Usage Notes
None.

types */

char(8),

fixed(31),
fixed(31),
fixed(31),
fixed(31);

/* 1: application name
/* 1: socket number
/* 1: backlog queue size
/* 0: return code
/* 0: ERRNO

Definition

Name of socket set
Socket number
Backlog queue size
Return code

PS listen

*/
*/

*/
*/

Returned ERRNO value

Chapter 16. RSK Sockets

367

| PS read

PS read

Purpose

Performs read() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data
declare

applname

socket
bufpointer
bufsize

rc

errno

/* how to call */
call PS_read

(
applname,
socket,
bufpointer,
bufsize,
rc,
errno

)s

Parameters
Parameter
applname
socket
bufpointer
bufsize

rc

errno

Reason Codes
Not applicable.

Usage Notes
None.

types */
char(8),
fixed(31),
pointer(31),
fixed(31),
fixed(31),
fixed(31);
/* 1: application name
/* I: socket number
/* 1: pointer to read buffer
/* I: size of read buffer
/* 0: return code
/* 0: ERRNO
Definition

Name of socket set
Socket number
Pointer to read buffer
Size of read buffer
Return code

Returned ERRNO value

368 z/VM V3R1.0 RSK Programmer's Guide and Reference

*/

*/
*/
*/
*/

| PS_recvfrom

Purpose

Performs recvfrom() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data
declare
applname
socket
bufpointer
bufsize
flagword
addrbufptr
addrbufsize
rc

errno

/* how to call */
call PS_recvfrom

(
applname,
socket,
bufpointer,
bufsize,
flagword,
addrbufptr,
addrbufsize,
rc,
errno

)s

Parameters
Parameter
applname
socket
bufpointer
bufsize
flagword
addrbufptr
addrbufsize
rc

errno

Reason Codes
Not applicable.

types */

char(8),
fixed(31),

pointer(31),

fixed(31),
fixed(31),

pointer(31),

fixed(31),
fixed(31),
fixed(31);

/*
/*
/*

/*
/*
/*
/*
/*

O O - b - b -

PS recvfrom

application name */
socket number */
pointer to recv buffer =*/
size of recv buffer */
flag word */
pointer to sockaddr_in =*/
size of sockaddr_in */
return code */
ERRNO */
Definition

Name of socket set
Socket number

Pointer to recv buffer

Size of recv buffer
Flag word

Pointer to buffer to receive sockaddr_in
Size of buffer to receive sockaddr_in

Return code

Returned ERRNO value

Chapter 16. RSK Sockets

369

PS recvfrom

Usage Notes
1. See the IUCV socket library documentation for definition of the flag word.

370 z/VM V3R1.0 RSK Programmer's Guide and Reference

PS select

| PS_select

| Purpose
| Performs select() function. Completion naotification arrives as an IPC message in a
| CMS queue.

| PL/X lllustration
| %include syslib(plxsock);

/* parameter data types */

|

[declare

| applname char(8),

| numinuse fixed(31),

| rdptr pointer(31),
| wrptr pointer(31),
[exptr pointer(31),
| toptr pointer(31),
[nghandle fixed(31),

| nkpointer pointer(31),
| nklength fixed(31),

| xid fixed(31),

| rc fixed(31),

| errno fixed(31);

/* how to call =/
call PS_select

I

I

| (

| applname, /* I: application name x/
[numinuse, /* I: sockets in use */
| rdptr, /* I: pointer to read descriptor x/
| wrptr, /* I: pointer to write descriptor */
| exptr, /* 1: pointer to exception descriptor */
| toptr, /* 1: pointer to timeval structure */
| nghandle, /* I: handle of notify queue */
| nkpointer, /* I: pointer to notify key */
| nklength, /* I: Tlength of notify key */
| xid, /* 0: transaction ID */
| rc, /* 0: return code %/
| errno /* 0: ERRNO */
I)s

| Parameters

| Parameter Definition

| applhame Name of socket set

| numinuse Number of sockets named in descriptors
| rdptr Pointer to read-interrogation descriptor

| wrptr Pointer to write-interrogation descriptor

| exptr Pointer to exception-interrogation descriptor
| toptr Pointer to timeval structure

| nghandle Handle of notify queue

| nkpointer Pointer to notify key

| nklength Length of notify key

| xid Returned transaction ID

Chapter 16. RSK Sockets 371

PS select

372

rc Return code
errno Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes
1. The handle for the notify queue must be a service ID. In other words, the
gueue in which the notification is to be placed must be a service queue. You
must have already arranged for this by calling QueueldentifyService.

2. The size of each descriptor in bytes, fdsize, is given by the formula 4 *
((numinuse+31)/32).

3. The notification message you see in the service queue will be the
concatenation of your notify key and the following extra data:

Offset.Length Usage

0.4 Return code

4.4 Errmo

8.8 Unused

16.fdsize Read-readiness descriptor
16+fdsize.fdsize Write-readiness descriptor
16+2*fdsize.fdsize Exception-readiness descriptor

4. The message will be sent with your notify key as its key.

5. If you need to cancel the operation before it completes, use the returned
transaction ID in a call to PS_cancel().

z/VM V3R1.0 RSK Programmer's Guide and Reference

| PS_sendto

Purpose

Performs sendto() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data
declare
applname
socket
bufpointer
bufsize
flagword
addrbufptr
addrbufsize
rc

errno

/* how to call */
call PS_sendto
(

applname,
socket,
bufpointer,
bufsize,
flagword,
addrbufptr,
addrbufsize,
rc,

errno

)s

Parameters
Parameter
applname
socket
bufpointer
bufsize
flagword
addrbufptr
addrbufsize
rc

errno

Reason Codes
Not applicable.

types */

char(8),
fixed(31),
pointer(31),
fixed(31),
fixed(31),
pointer(31),
fixed(31),
fixed(31),
fixed(31);

/* I: application name
/* 1: socket number
/* I: pointer to send buffer
/* I: size of send buffer
/* 1: flag word
/* I: pointer to sockaddr_in
/* 1: size of sockaddr_in
/* 0: return code
/* 0: ERRNO
Definition

Name of socket set
Socket number
Pointer to send buffer
Size of send buffer
Flag word

*/
*/
*/

*/
*/
*/
*/
*/

PS sendto

Pointer to sockaddr_in describing recipient

Size of buffer to receive sockaddr_in

Return code
Returned ERRNO value

Chapter 16. RSK Sockets 373

PS sendto

Usage Notes
1. See the IUCV socket library documentation for definition of the flag word.

374 z/vM V3R1.0 RSK Programmer's Guide and Reference

| PS_setsockopt

| Purpose
| Performs setsockopt() function.

| PL/X lllustration
| %include syslib(plxsock);

/* parameter data types =/

I

| declare

| applname char(8),

| socket fixed(31),

| Tevel fixed(31),

| optname fixed(31),

| optvalptr pointer(31),
| optvalbufsize fixed(31),

| rc fixed(31),

| errno fixed(31);

/* how to call */
call PS_setsockopt
(

applname,
socket,

level,

optname,
optvalptr,
optvalbufsize,
rec,

errno

)s

/*
/*
/*
/*

/*
/*
/*

~
*
O O o o -

Parameters
Parameter
applname
socket

level
optname
optvalptr
optvalbufsize
rc

errno

| Reason Codes
| Not applicable.

| Usage Notes
[None.

application name */
socket number */
Tevel setting */
option name */
pointer to value buffer =*/
Tength of value buffer =*/
return code */
ERRNO */
Definition

Name of socket set
Socket number
Option level

Name of option being set

Pointer to option value

Size of option value
Return code

Returned ERRNO value

Chapter 16.

PS_setsockopt

RSK Sockets 375

PS shutdown

| PS_shutdown

Purpose

Performs shutdown() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types =/

declare
applname char(8),
socket fixed(31),
method fixed(31),
rc fixed(31),
errno fixed(31);
/* how to call */
call PS_shutdown
(
applname,
socket,
method, /* 1:
rc, /* 0:
errno /* 0:
)s
Parameters
Parameter
applname
socket
method
rc
errno

Reason Codes
Not applicable.

Usage Notes
None.

376 z/VM V3R1.0 RSK Programmer's Guide and Reference

/* 1:
/* 1:

application name
socket number
shutdown method
return code
ERRNO

Definition

Name of socket set
Socket number
Shutdown method
Return code

Returned ERRNO value

*/
*/

*/
*/

| PS_socket

Purpose

Performs socket() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data
declare

applname

domain

type

protocol

socket

errno

/* how to call */
call PS_socket

(
applname,
domain,
type,
protocol,
socket,
errno

)s

Parameters
Parameter
applname
domain

type

protocol
socket

errno

Reason Codes
Not applicable.

Usage Notes

types */

char(8),

fixed(31),
fixed(31),
fixed(31),
fixed(31),
fixed(31);

/*

/*
/*
/*
/*

O O o -

application name
domain

type

protocol

socket number
ERRNO

Definition

Name of socket set
Socket domain
Socket type
Protocol to use
Socket number

PS socket

*/

*/
*/
*/
*/

Returned ERRNO value

1. Only domain AF_INET is supported.

Chapter 16. RSK Sockets

377

PS_write

| PS_write

Purpose

Performs write() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types =/

declare

applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),
rc fixed(31),
errno fixed(31);
/* how to call =/

call PS_write

(

applname, /* 1:
socket, [* 1:
bufpointer, /* 1:
bufsize, /* I:
rc, /* 0:
errno /* 0:
)s

Parameters

Parameter

applname

socket

bufpointer

bufsize

rc

errno

Reason Codes
Not applicable.

Usage Notes
None.

378 z/VM V3R1.0 RSK Programmer's Guide and Reference

application name

socket number

pointer to write buffer
size of write buffer
return code

ERRNO

Definition

Name of socket set
Socket number

Pointer to write buffer
Size of write buffer
Return code

Returned ERRNO value

*/
*/
*/
*/
*/
*/

Appendix A. Sample PROFILE RSK

[*]

/**/
/* */
/* Sample Reusable Server Kernel profile file */
/* */

/**/

parse arg stuff
say 'Args were' stuff

/****************************/

/* first, config the server =/
/****************************/

/****************************/

/* set names of data files =/
/****************************/

/* configure key data files =/
'"CONFIG SGP_FILE MYSERV RSKSGP A'
"CONFIG UMAP_FILE MYSERV RSKUMAP A'

/* config auth data =/

"CONFIG AUT_LOCATION MINIDISK'

"CONFIG AUT_LOG MYSERV RSKAUL B'
"CONFIG AUT_DATA 1 MYSERV1 RSKAUD B'
"CONFIG AUT_INDEX 1 MYSERV1 RSKAUX B'
"CONFIG AUT _DATA 2 MYSERV2 RSKAUD B'
"CONFIG AUT_INDEX_2 MYSERV2 RSKAUX B'

/****************************/

/* set other config vars */
/****************************/

/* configure RSCS userid x/
address command 'IDENTIFY (LIFO'
parse pull rscsid .
"CONFIG RSCS_USERID' rscsid

/* configure monitor data */
"CONFIG MON_PRODUCT_ID MYSERVER'
"CONFIG MON_KERNEL ROWS 50'

/* configure authorization database */
"CONFIG AUT_CACHE 100
"CONFIG AUT_FREE 100'

/* configure AUTHCHECK family =/
"CONFIG AUTHCHECK AUTH ON'
"CONFIG AUTHCHECK_CACHE ON'
"CONFIG AUTHCHECK CMS ON'
"CONFIG AUTHCHECK CONFIG ON'
'"CONFIG AUTHCHECK CP ON'

© Copyright IBM Corp. 1999, 2001

379

"CONFIG AUTHCHECK_ENROLL ON'
'"CONFIG AUTHCHECK_LD ON'
"CONFIG AUTHCHECK_SERVER ON'
"CONFIG AUTHCHECK_SGP ON'
"CONFIG AUTHCHECK_USERID ON'
"CONFIG AUTHCHECK_WORKER ON'

/* configure memory API */
'"CONFIG MEM_MAXFREE 100'

/* set NOMAP actions */
'"CONFIG NOMAP_TCP OFF'
"CONFIG NOMAP_UDP OFF'
'"CONFIG NOMAP_MSG OFF'
"CONFIG NOMAP_APPC OFF'
"CONFIG NOMAP_IUCV OFF'
"CONFIG NOMAP_SPOOL OFF'

/* configure MSG driver */
"CONFIG MSG_NOHDR OFF'

/* configure SPOOL driver =/
"CONFIG SPL_INPUT_FT RSKRQST'
"CONFIG SPL_OUTPUT FT RSKRESP'

/* configure implicit routing */
"CONFIG VM_CONSOLE ON'

"CONFIG VM_MSG ON'

"CONFIG VM_SPOOL ON'

"CONFIG VM_SUBCOM ON'

/***************************/

/* and start it */

/***************************/

"RUNSERV'
if (rc<>0) then
return 100

/**/

/* attach certain services to subcom driver x/
/**/

'SUBCOM START WORKER'
'SUBCOM START USERID'
"SUBCOM START SERVER'
'SUBCOM START AUTH'
'SUBCOM START ENROLL'
'SUBCOM START SGP'
'SUBCOM START CMS'
'SUBCOM START CP'

"SUBCOM START TCP'
'SUBCOM START IUCV'
'SUBCOM START APPC'
"SUBCOM START SPOOL'
'SUBCOM START MSG'
'SUBCOM START CONSOLE'

380 z/VM V3R1.0 RSK Programmer's Guide and Reference

/**/

/* attach certain services to console too */
/**/

"CONSOLE START CACHE'
"CONSOLE START CONFIG'
"CONSOLE START USERID'
"CONSOLE START WORKER'
'CONSOLE START SERVER'
"CONSOLE START AUTH'
'CONSOLE START SGP'
'CONSOLE START CMS'
"CONSOLE START CP'
"CONSOLE START ENROLL'

'CONSOLE START TCP'
"CONSOLE START IUCV'
"CONSOLE START APPC'
"CONSOLE START SPOOL'
'CONSOLE START MSG'
"CONSOLE START SUBCOM'

/**/

/* and attach some to the MSG driver */

/**/

'MSG START CACHE'
'MSG START CONFIG'
'MSG START USERID'
'MSG START SERVER'
'MSG START AUTH'
'MSG START SGP'
'MSG START CMS'
'MSG START CP'
'MSG START ENROLL'
'MSG START WORKER'

'MSG START TCP'
'MSG START SPOOL'
'MSG START MSG'
'MSG START SUBCOM'

/**/

/* start author-supplied services */
/**/

/* for example... */
'"TCP START MYSERV 500 10 0.0.0.0 TCPIPI'
'"TCP START MYSERV 500 10 0.0.0.0 TCPIP2'
'"TCP START MYSERV 500 10 0.0.0.0 TCPIP3'
'SUBCOM START MYOQP'

"CONSOLE START MYOP'
'MSG START MYOP'

Appendix A. Sample PROFILE RSK

381

382

/**/

/* wait for server to end */
/**/

"WAITSERV'

/**/

/* perform server-specific termination here */
/**/

/**/
/* ... and return to caller */

/**/

return 0

z/VM V3R1.0 RSK Programmer's Guide and Reference

Appendix B. Sample User ID Mapping File

kkhkkhkkkhkkhkhkkhhkhhkhhkkhhkhkhkkhhkkhhkhkhkkhhkkhhkhkhkkhkhkhkhhkhkhkkhhkhkhkkhhkkhhkhkhkkhkhkkhkkkhkkkkx

LR T R G T N S N N N S N SR N N N N S N S N N G T N R . S N N RN N R N S T SR I

© Copyright IBM Corp. 1999, 2001

1.

T
U
I
A
S
M

*

Sample Reusable Server Kernel userid mapping file

This file contains the mapping table that translates
a two-token userid identifier to a single-token userid.

USAGE NOTES:

File can be V-format or F-format, it doesn't matter.
LRECL doesn't matter, either.

. Blank Tines and lines starting with "*" are ignored.

. If a ";" appears in the line, the ";" and everything

after the ";" are ignored.

. Each clause must fit completely in one file record.

Case IS significant in this file.

. The keyword in each clause must be in UPPER CASE.
. Unrecognized clauses are skipped without mention.

. The server kernel requires a userid mapping file to

be present.

CLAUSE DEFINITION:
Each clause is a record as follows:

MAP input_conn input nodeid input userid output userid ; comment

where:
MAP is a literal identifying a mapping record
input_conn is the input connectivity technology name
input_nodeid is the input node ID
input_userid is the input user ID
output_userid is the output of translation
comment is an optional comment

input_conn is one of:

cpP describes a TCP/IP mapping
DP describes a UDP/IP mapping
ucv describes an IUCV mapping
PPC describes an APPC/VM mapping
POOL describes a SPOOL mapping

SG describes a MSG mapping

applies to all technologies

L . S R R R . S T S N N N A I N . S T SR N N N N N N S S N N I N S S O T R R . I

383

Notes:

1. The input fields are expressed in the same notation as queue
and event keys in CMS Application Multitasking, namely:

Case is significant,

"x" s a wildcard of O or more characters,
"%" is a wildcard of exactly one character,
"'" js an escape character.

o 0 T o

For example, "GDLVM%" matches GDLVM1, GDLVM2, etc. but not
GDLVMV50, and "GDL*" matches GDLVM1, GDLVMV50, GDLAIX, etc.
WARNING: if you want "x", "%", or "'" to be a literal in
the field, precede it by the escape character '

2. The output_userid field can be any Titeral or "=" to mean
"use the value of input_userid".

3. The input fields can each be up to 64 bytes long.

4. The output_userid field can be up to 64 bytes long.

Examples:

MAP APPC '*USERID: * BKW BKW
MAP IUCV GDLVM7 BKW BKW
MAP TCP 9.130.57.10 * BKW
MAP UDP 9.130.57.10 * BKW
MAP SPOOL GDLVM7 BKW BKW
MAP MSG GDLVMWEB BKW BKW

In these examples, all of the following clients appear to be
userid BKW:

- an IUCV-connected client coming from a virtual machine
whose userid is BKW

- an APPC/VM-connected client whose LU starts with "*USERID"
and whose security userid is BKW

- a TCP/IP-connected client residing on machine 9.130.57.10
- a UDP/IP-connected client residing on machine 9.130.57.10
- a spool-connected client sending from BKW at GDLVM7

- a MSG-connected client sending from BKW at GDLVMWEB

SEARCH TECHNIQUE:

The file is searched top to bottom, the first matching clause
being the one that takes effect.

L R R R R SR N T R R RN N SR N JE R NS S N S N N N R G G N N S . SN N SN N N SR R S N SN N N
L S T R S N S N N N R N S R . S N N N N N N S N N N S N S R S . R . SR N SN N N

khkkkhkkkkhkhkhkkhkhkhkhkhhkhkhkhhkhhkhhkhhkhhkhhhhhkhhhhhkhkhhkhkhkkhkhhkhkhkkhkhkkhkhkkhkx*x

384 z/vM V3R1.0 RSK Programmer's Guide and Reference

Appendix C.

Authorization Data File Formats

This appendix describes the internals of the files used to hold authorization data
managed by the reusable server kernel. The information is provided so that
vendors and toolsmiths might have a way to write management tools for these data
files.

Overview

First, it's important to note that an authorization data set consists of a data file
together with its corresponding index file. The data file contains records that define
object classes, objects, users, and rules. The index file contains hash tables that
let the reusable server kernel quickly locate specific objects' and specific users'
information in the corresponding data file.

If the authorization data is being kept on minidisk, the reusable server kernel will
keep twin copies of the authorization data set and will also keep a third kind of file,
a log file, that lets it ensure consistency between an index file and its corresponding
data file.?® The reusable server kernel uses the log file to keep track of whether
related changes are successfully applied to both an index file and its corresponding
data file. The log file lets the reusable server kernel recover an authorization data
set from its twin if a system failure should introduce some kind of integrity problem.

The authorization data files make heavy use of linked lists within the files
themselves to relate records to one another. For example, all of the authorization
rules applying to a given user are linked to one another, so that they may all be
removed together by ssAuthDeleteUser. In all such linked lists, the linking is
accomplished by file record number.

The Data File

The data file's role is to contain specific definitions of objects, users, classes, and
rules. The data file is an F 300 file. Each record (or row) of a data file contains:

» A definition of an object class and a doubly-linked-list listhead that anchors all
of the rows defining objects in this class, OR

* A definition of an object and a doubly-linked-list listhead that anchors all of the
rows defining rules applying to this object, OR

* A definition of a user and a doubly-linked-list listhead that anchors all of the
rules mentioning this user, OR

» A definition of a specific rule, that is, a correlation between an object, a user,
and some subset of the actions defined on the class to which the object
belongs, OR

e A stamp indicating that the row is free (unused) so that it might be allocated for
another purpose at some time in the future.

28 The log file is unnecessary for SFS situations because the reusable server kernel just dedicates a work unit to the authorization

data set.

© Copyright IBM Corp. 1999, 2001 385

One can see, then, that the relationship between object classes, objects, users, and
actions is recorded by maintaining linkages among the records in the data file.

The following tables give the specific formats of each of the kinds of records found
in the data file.

Table 48. Free Row

386

Offset Length Usage

0 4 X'00000000'

4 8 Unused

12 4 Row number of next free row

Table 49. Class Row

Offset Length Usage

0 4 X'00000001"

4 4 Row number of next class row

8 4 Row number of previous class row

12 4 Row number of first object in class

16 4 Row number of last object in class

20 4 Class identifier

24 8 Class name

32 4 Number of operations defined on class
36 128 Operation names (four bytes each)

Table 50. Object Row

Offset Length Usage

0 4 X'00000002"

4 4 Row number of first rule for object

8 4 Row number of last rule for object

12 4 Row number of next object in class

16 4 Row number of previous object in class
20 4 Row number of next object in object hash
24 4 Row number of previous object in object hash
28 4 Object ID

32 4 Class ID of class to which object belongs
36 4 Row number of said class's row

40 4 Length of object name

44 256 Object name

Table 51 (Page 1 of 2). User Row

Offset

Length

Usage

0

4

X'00000003"

z/VM V3R1.0 RSK Programmer's Guide and Reference

Table 51 (Page 2 of 2). User Row

Offset Length Usage

4 4 Length of user ID

8 4 Unused

12 4 Row number of first rule for user

16 4 Row number of last rule for user

20 4 Row number of next user in user hash

24 4 Row number of previous user in user hash
28 64 User ID

Table 52. Rule Row

Offset Length Usage

0 4 X'00000004"

4 4 Row number of next rule for object

8 4 Row number of previous rule for object
12 4 Row number of next rule for user

16 4 Row number of previous rule for user
20 4 Row number of user row

24 4 Row number of object row

28 4 Length of user ID

32 64 User ID

96 4 Object ID

100 4 Operation count

104 128 Permitted operations (four bytes each)

The Index File

The index file, an F 4096 file, contains these three things:

¢ An anchor row that gives certain critical information about the authorization
data set

¢ An object hash that lets the reusable server kernel find a given object's row
quickly

e A user hash that lets the reusable server kernel find a given user's row quickly

The anchor row -- record 1 of the index file -- is described in Table 53.

Table 53 (Page 1 of 2). Anchor Row

Offset Length Usage

0 4 Number of rows in data file

4 4 Row number of first class row in data file
8 4 Row number of last class row in data file
12 4 Row number of first free row in data file

Appendix C. Authorization Data File Formats

387

Table 53 (Page 2 of 2). Anchor Row

Offset Length Usage

16 4 Next class ID to use

20 4 Next object ID to use

24 4 Status bits (all zero when server down)

The object hash and user hash are each the same size. Each hash consists of
4096 buckets, numbered 1 to 4096. Each bucket consists of an eight-byte listhead
- a first row in hash record number and a last row in hash record number. Thus
each hash is 8 4096-byte records long. Records 2-9 are the object hash, and
records 10-17 are the user hash.

To locate the row for a given object, the reusable server kernel hashes the object
name to produce an integer i in the range [1,4096]. It then searches object hash
bucket i for the object row nominating the object of interest. A similar
hash-and-search procedure is used to find the row for a given user.

The Log File

When the authorization data sets reside on minidisk, the reusable server kernel
maintains an F 256 log file that records updates that are in progress against an
authorization data set's pair of files. The records in the log file are these:

e The log stamp row records which twin is known to be good and which twin has
an update in progress. There is only one log stamp row in the log file and it is
always record 1.

¢ A log update row lists a set of records in either an index file or a data file. Said
list of records is in the process of being updated (rewritten).

The following tables give the organizations of these records.

Table 54. Log Stamp Row

Offset Length Usage

0 4 Last known good authorization set (1 or 2)

4 4 Set against which an update is in progress

8 4 Number of update records following in log file

Table 55. Log Update Row

Offset Length Usage

0 4 Data file (1) or index file (2) changes

4 4 Number of records being changed

8 248 Record numbers of records being changed (four bytes
each)

The reusable server kernel performs log file updates, index file updates, data file
updates, and file closes in a specific order which exploits the safety properties of
the minidisk file system. The order of updates to these files is carefully controlled

388 z/VM V3R1.0 RSK Programmer's Guide and Reference

so that the files are always maintained on disk in a state from which the
authorization database can be recovered even if there is an /O failure.

The recovery algorithm is simple. When the reusable server kernel starts, it reads
the first record of the log file to determine whether one of the twins was in the
process of being updated when the files were last committed to disk. If one of the
twins was being updated, the log update records tell which records were being
rewritten. The reusable server kernel uses that list to restore the in-progress twin
to a consistent state, merely copying the named records from the known-good twin
to the in-progress twin. If the failing writes reflected a transaction that had already
been performed against the known-good twin, the transaction will be propagated to
the in-progress twin; if the failing writes reflected a transaction that had not yet
been performed against the known-good twin, the transaction will be backed out.
In this manner the in-progress twin is restored to a consistent state.

Appendix C. Authorization Data File Formats 389

390 z/VM V3R1.0 RSK Programmer's Guide and Reference

Appendix D. Enrollment Data File Format

An enrollment file is just a V-format CMS file, one file record per enrolled entity.

Columns Usage

1 A for add, D for delete

2-65 Record's key

66-end Record's data, if column 1 is A

When it loads the file into the data space, the reusable server kernel reads the file
one record at a time, performing the operation specified in column 1. As API calls
change the database, records are written to the end of the enroliment file,
describing the API calls that took place. When the enroliment set is dropped, the
file is closed with commit. If commit could not take place, the changes are backed
out.

© Copyright IBM Corp. 1999, 2001 391

392 z/VM V3R1.0 RSK Programmer's Guide and Reference

Appendix E. Storage Group File

The file containing storage group definitions is very simple. Each storage group is
represented by one record. The first token of the record is the storage group
number in decimal. The remaining tokens of the record are the hexadecimal virtual
device numbers of the minidisks making up the storage group.

© Copyright IBM Corp. 1999, 2001 393

394 z/vM V3R1.0 RSK Programmer's Guide and Reference

Appendix F.

Service Names

Data Spaces

Reserved Names

The reusable server kernel uses several named CMS objects, such as storage
subpools, mutexes, and the like. Further, in some cases the reusable server kernel
uses named objects managed by its own entry points (for example, services
registered through call to ssServiceBind).

The names of all CMS-managed objects used by the reusable server kernel start
with the prefix BKW (case is not significant). Server authors should avoid this prefix.

Of course, CMS itself names objects with the prefixes DMS and VM, so these
prefixes should be avoided as well.

Specifically, the following service names are used:

Name Object

APPC APPC/VM line driver service name
AUTH Authorization data manipulation service
CACHE File cache manipulation service

CMS CMS command execution service hame
CONFIG Configuration manipulation service
CONSOLE Console line driver service name

CP CP command execution service name
ENROLL Enrollment service name

IUCv IUCV line driver service name

MSG MSG/SMSG line driver service nhame
SERVER Server management service name
SPOOL Spool line driver service name

SUBCOM Subcom line driver service name

TCP TCP/IP line driver service name

TRIE Trie manipulation service

ubpP TCP/IP line driver service name

USERID Userid mapping service name

WORKER Userid mapping service name

The reusable server kernel creates data spaces whose names are of the form
BKWen, where n is the storage group number. It also creates data spaces whose
names begin with BKW_.

TCP/IP Subtask Names

The TCP/IP line driver uses the IUCV interface to TCP/IP. When it connects to the
TCPI/IP service machine, it uses subtask names that are uppercase seven-digit
hexadecimal numbers prefixed by T (that is, anything from T0000000 to TFFFFFFF).

© Copyright IBM Corp. 1999, 2001 395

UDP/IP Subtask Names

The UDP/IP line driver uses the IUCV interface to TCP/IP. When it connects to the
TCP/IP service machine, it uses subtask names that are uppercase seven-digit
hexadecimal numbers prefixed by U (that is, anything from U0000000 to UFFFFFFF).

396 z/VM V3R1.0 RSK Programmer's Guide and Reference

Appendix G. More Detail On Reason Codes

Table 56 on page 398 gives the correspondence between numeric values of
nonzero reason codes and their symbolic names. When an entry point (for
example, ssSgpStart) gives you a nonzero reason code, use the table to interpret
the reason code and devise a recovery strategy.

© Copyright IBM Corp. 1999, 2001 397

‘Aeule 1abie| e

asn ‘paroadxa Aesre Indino JnoA ueyl paulap sl Jasn aiow alam alayL 13lgoAiandyinyss Auew 00y al ne ss ¥IE
‘suonelado Jama) asn ‘ssejo 109lgo

Jad pauyap suoneiado zg Jo nwi| 8yl Buipasdxa ul Nsal PINOM |[ed INOA sse|DMIPONYINYSS Auew 001 al ne ss ¥IE
‘Aelle 1abie)

e asn "paroadxa Aesre 1ndino INoA ueyl paulap S193lqo aiow a1am alayl s100[gO1SITYINYSS Auew 001 al 1ne” ss yIE
‘Aelle 1abie| e

asn ‘paroadxa Aeute Indino INoA ueyl paulsp SaSSe|d alow aIam alayL Sasse|DISITYINYSS Auew 001 al 1ne ss yIE
‘1oddns \g| 19€1U0D

‘pajre) Sy 9sea [ayYXa1n| aunnol 1S 01 |auldy Jaaias ayl Ag el v e Jley Jw 8l Ine” ss TS
‘1oddns NG| 19€1U0D

‘pajre} sey [eubLSURAPUO) BUINOI SO 01 [dUIdY JBAISS 3yl Aq [[ed v e [le) SAD 8l Ine” ss rAX>
‘1oddns NG| 19€1U0D

‘pajie) sey 3LemARAPUO) BUIINOI]SO 0} [BUIdY JaAIBS ayl AQ |ed v e [ley MAD aJ Ine ss TTE
‘uoddns |Ag| 19€1U0D

‘pa|re} sey aJ4Lnboyxain aunnos 1S 01 [dulay JaAIas 8yl Aq |[ed v e |ley bew aJ 1ne ss 0Tg
"awreu 123lqo

jualaylp e Alddns 1sixa Jou saop Bullialal ale noA yaiym o1 19alqo ayl e 1098[go ou a4 Ine” SS 60E
‘awreu sse|o

jualayip e Alddns -1sixa Jou saop Buliaal aie noA yaiym 0l Ssejd ayl e SSe|D OuU al Ine ss 80¢
"aweu 1090 J0 aweu SSe|o Walayip

e Alddns ‘sisixa Apeale a1eald 01 bulAn are noA 193lqo 1o ssepd aylL e SISIX@ aJl Ine” ss 10¢€
“1aifenb peq

© SUlRlU0d Salud ayl Jo auQ ‘palddns noA Aeure sialienb ayl mainay e [enb peq as 1ne ss G0E
*9p02 uondo paziubodaiun

ue suleuo9 salua ayl jo auQ ‘palddns noA Aeure suondo ayr mainay e uondo peq aJ Ine ss ¥0E

"@AISN|oUl 9GZ pue T usamiag Yibuag| 10alqo ue Alddns e y1bua| [qgo peq al 1ne ss €0

"dAISNoUl 9 pue T usamiaq yibua| | J1asn e Alddns e yibua| Jasn peq aJl Ine ss 20

"1unod Yyibus| Aeue Jo 1unod uondo pijea e Alddns e UN0Y peq al Ine ss TOS

9|y buiddew) Jasn ayy 01 uonewuojul fuiddew areudoidde ayy ppy e punoy jou al pIin”_ ss TOT

uonoy aunnoy JlloquAs oBWNN

SUOIOY PapuaLIWIOday pue sapo) uoseay (€T jo T abed) 95 9|qel

z/VM V3R1.0 RSK Programmer's Guide and Reference

398

‘urebe An pue auiyoew enuin 1abie| e asn "dnoib abelols ay) Juasaidal

0] A1essadau S$x20]q |04Ju0d 8yl pjoy 03 abelols WBIdIYNSUI S| 818y L e abelols Jo 1no as dbs ss €09
‘uonelado ayy Anal
pue (sreudoidde se ‘q| Jo sweu) Buisn ase noA Jaynuapl dnoib abelols
3yl %29y ‘1SIxa Jou saop Buiusel are noA yoiym oy dnoab sbelols syt e punoj jou a1 dbBs”ss 209
‘Aeste Jablie| e asn
‘pIoy pinod Aeure Indino InoA uey) paulyep SYSIPIUILW SI10W SI9M BJ9yL Aanpdbsss Auew ooy a1 dBs”ss T09
‘Aeure Jablie| e asn 'pjoy
pinoa Aeure indino InoA uey) pauyap sdnoib abelols aiow alam alayl 1sndbsss Auew 00y a1 dbBs”ss T09
‘A|Buipiodoe
puodsal pue walsAs 3|l 8yl pue sislsweled uoneinbiyuod Ny 8yl
3oayD "pajre) sy Sajl eiep uonezioyine ay) Jo auo uado o0y 1dwane uy e [rej uado a4 ine”ss €ze
‘uoddns |Ng| 10e1U0D "pajre) sey liun jiom SND e 186 01 1dwene uy e rey nmb el 1ne” ss YAAS
‘siayng Jabre| asn ‘payesunty sem sq| J9SN pauinial aiow 1o duQ 18lgoA1sndyINyss ounJy a4 ne”ss T2E
'slayng Jabire| asn ‘paresuns) sem sauwleu 193[go pauinial aiow 1o dUQ s198lqOIsIyInyss ounJ) a4 ne”ss T2E
‘A|Buipiod2e puodsal pue WalSAS 3|} ayl %28yd
"PaJ4ind20 Ssey Sa|ly 8y} JO BUO 01 J0LI8 O/ Ue sueaw SIyl ‘pajie} sey sa|l
Blep uonezioyine ayl Jo auUo 0} SPI0JaJ 8I0W 1o suo alum 0} dwane uy e [le) @1UM Bl Ine ss 0ze
‘AiBuipioooe puodsal pue SUORIPUOD Yl0g 10} %08yD "PaAdLIal Spiodal
ay) pjoy 031 abelols ualNsuUl SI 318yl Tey) J0 Palinddo sey sajl ayl
JO BUO 0] J0JJ3 O/ Ue Jey) Jayle ueaw pjnod siyl ‘pajie} sey sajy erep
uoiezuoyine ay) JO U0 WOl SPJ0JaJ 8I0W JO U0 dAdLal 0] ldwane uy e |ley peas al Ine ss 61E
‘peo [ayyanyss AL
"auIllo aseq elep uoneziioyine ay) uayel sey (|eubLSaeppuo) ‘ajdwexs
10}) SaunnoJ uonezZIUoIYIUAS S,SND Jo auo Buled ul Jold snoinaid v e 10112 2UAS Aaud a1 Jne”ss 81¢
"peo [ayyanyss A1l
"9UIIO 1l udye] Sey askq elep uonezuoyine ayl 01 Joud Q/| shoinaid v e Joud ol Aaud el ne ss LTS
‘@l Jasn jualayip e A11 "erep uonezuoyine
By} Ul 1SIXa Jou Ssaop 81ed0| 01 bundwane are nok | Jash ayL e Jasn ou aJ Ine ss 9T¢
‘Aeule 1abie)
e 9sn ‘paloadxa Aeue Indino INOA uey) pauyap Sajnl aiow alam alayl a|nygAianduinyss Auew 00y al 1ne ss ¥IE
uonoy aunnoy J1|oqWAS JlIBWNN

SUOIOY PapuaLIWIOday pue sapo) uoseay (€T Jo Z abed) 9s 9|qel

399

Appendix G. More Detail On Reason Codes

‘loddns g| 10e1U0D "8|0SU0D aulydew

[enuIA 8y} Uo 8pod uwinlal INI43A WSIAWVIN B 89 pInoys aiayL -pajie}
S)20|qg YsIpiuiw 01 sabed aoeds erep dew 0] 1dwane s,|aulay I9AISS Byl

e

[rey dew ol dbs ss

LT9

"9ZIS auIyoeW [enuIA

InoA Buisealoul A1 ‘esned ayl aq 01 sieadde siy1 j| “abelols wLaIYNSUl
Aq pasned aqg osje ued Joud siyl "Ajrendoldde 1oe pue apod uoseal pue
uinal 8y} YyoJeasay '9|0SuU0 aulydew [enliA 3yl U0 9pod UoSeal pue
uinlal e aq pinoys aisy) ‘pauaddey siyy 4| "pajre) aney wbiw (Ad4ILNIAI
MSIAWdVIA) [0od ysipiuiw sy} sulsp 01 Jdwshe s [8uldy JaAISS ayL

ire

ey jood a4 dbs”ss

919

‘peaisul O/ 10520, X

ovIa Buisn dnoib abelols ay) Bunuels Japisuod ‘Juswalels Alo1oallp

ay1 1snlpe jouued noA J| -areudoidde se juswalels Alo1oalp ay 1snlpy
‘nwi| azis abelois arebalbbe ayl 1o uwil sadedserep Jo Jaquunu ayl Jaylia
papaadxa 10U aABY NOA Jeyl ainsua 0} Juswarels Al0joallp 4O 3IvdSyaay
9I4NOIX S.2uUlydew [enuIA INOA %08yD pajie) sey sysipiuiw s,dnoib
abelols e dew 01 sadeds erep ajeald 01 Jdwane s,[aulay JaAISS ayL

ire

ey sp a1 dbs ss

ST9

‘1oddns |Ng| 10e1U0D "pajre)
Sey SaunnoJ ajgeleA UoRIpuod 1S ayl 01 S|[ed S,|aulay JaAISS 3y} Jo auQ

Ire

ey A9 ol dbs”ss

Z19

1811 auljuo dnoub abelois ayy
Buug -uaddey jouued salum alojalayl pue aulo st dnoib abelols ayl

aldbsss

aunyo aJs dbs ss

019

‘auliyo Apeale si dnoib abelols ayl

doisdbsss

aunyo aJt dbs ss

0T9

184y 1 dois “pauels Apeale si dnoib abelols ayl

ueisdbsss

auluo aJ dbs”ss

609

‘uonelado ayl Anal uayy pue (doysdhisss asn) aulyo U ayel
‘mou 1ybil auljuo si 31 asnedaq dnoib abelols SIY) S19|ap JouuLRd NOA

a19|oqdbsss

aulnuo a1 dbs”ss

609

‘urefbe A pue suonIpuod asayl JO [e XJ8yD 'PaAlasal uaaq

lou Ssey 11 1ey) Jo gy e palewIo) Jou SI JSIpIuiL 3y Jey) a|qissod osfe
S11] “payuil Jou SI ysipluiw a8yl sdeyiad 10 Jaquinu 32IASP 1981100Ul Ue
aney 1ybiw noA ‘pajre} sey dnoub abelols INOA Ul paulap SYSIpIUIL By}
JO 8JowW 10 3UO JO saINgLIe ay) aulwlalep 01 Wdwane s,|aulay JaAISS ay L

ire

|rey bpaas dbs ss

809

18114 dnoub abrelols ayl a19jap Jo Jaquinu dnoib abelols Jualayip
B 9sM 'sisIxa Apeale areald 0] Bundwane are noA dnoib abelois ayl

ire

sisixa a4 dbs™ss

L09

‘1oddns NG| 19€1U0D
‘pajie) sey saunnod xanw SO 8yl 0] S|[ed S,|aulay JaAISS ay) Jo auQD

ire

ey xw a4 dbs”ss

09

uonoy

aullnoy

oljoquiAis

RIETNIN

SUOIOY PapuaLIWIOday pue sapo) uoseay (€T Jo £ abed) 9g 9|qel

z/VM V3R1.0 RSK Programmer's Guide and Reference

400

‘dnolb abelols Jajjews € asn "1 Ul S%00|q gM ¥ 44444444, X ueyl aiow
ale aiay) - abre| 001 si uels 01 Bundwane ate noA dnoib abelols ayl

e

Big 00y a1 dbs ss

929

‘Alessadau se

19A0231 pue uoneuawnaop 4o areudoidde syl ¥o8y)d "aziemu| ,0520.X
oVIA Aq pauinial sem 10 Uey) Jaylo JO Spod uinial ¥ JUSWUOIIAUD
0520, X ©VIA 8yl azi[eniul 0] ajgeun Sem |auiay Janias ay) Ing dnoib
abrlols InoA Joj poylaw O/l a4l Sk ,0520,X OVIA 9Sh 01 payse NoA

ire

rey oGz belp a1 dbs ss

G29

"saoeds ered WA 10 ‘,#V00,X 9VId

£,0520. X 9VIA -- dnoib abelois ay) pauels pey noA moy Jawwelibolid
WwalsAs ayl |19 0] INs g ‘a.n|ie} JO pup| SWOS PaLINdul ARy

apISal SYSIPIUIW INOA YIIYM UO S3IASP By} Jayiaym noge Jawwelbolid
walsAs oA yum >08yd "pajie) O/l [eal ayl reyl s|qissod si 1l ‘Ajreuly

‘azIs abelols [enuIA
Jabure| e Buisn A1 -abelols Jo 1IN0 SI sulydew [enuiA InoA ajqissod si

137V Inok
JO anfeA ay) 1o} 019z asn ‘uoneniis JNoA SI SIYl §| "anjeA |3y 0lazuou ue
Aj1oads jouued nok ‘,#v00, X ©VIA Buisn dnoib abelols ayl pauels noA j|

ire

[rey ol a1 dbs ss

¥29

‘dnoub abelois ayy 01 Bunum wodj ureljal 1o apow
allIm-peal ul 1l Leisal pue dnolb abelois ay) dois “Ajuo-peal pauels
sI dnoub abelois ay1 1ng dnoib abelols ayl 01 a1IM 01 pardwane NoA

e

apow Buoim ol dbs ss

€29

‘urebe An
pue sindui JnoA ¥oayd -abuel Jo N0 SI ‘Aelre ue ul SJUsWa|a JO JUNOd 3y}
10 Jaquinu dnoib abelols e se yans ‘paliddns noA iaraweled Jeeas sawos

ire

abuel Jo 1no aJs dbs”ss

[442)

‘Aluo-peas dnoib abelols ayl uels Jo ‘urebe A
pue yui ay) abuey)d -Ajuo-peas payull si dnoib abelois ay) ul sysIpiuiw
3y} JO alow 10 auo Ing awim-peas dnolb abelols ay) LeIS 0] payse NOA

ire

Aluo peal al dbs ss

029

"9|l} Y1 01 1M 0} Aressadau suoissiwiad

3} Sey aulydew [enwiA JI9AISS aU} 8INS ayew 0} %23yd pue 1991109 SI
anjeA uoneinblyuod ay) ains axew 0} 329yD ‘paje} 3714 d9S Jerewered
uoneinbiyuod Aq 01 pajuiod 31 ay) a1Mmal 01 Jdwane s,[aulay JaAISS ayL

ire

ey aumal ol dbs ss

619

‘urebe An pue Aeire sinquie ayl
lreday ‘anpea paziubodalun ue suieiuod palddns noA Aeue awngune ayl

ire

gune peq al dbs ss

8T9

uonoy

aullnoy

oljoquiAis

RIETNIN

SUOIOY PapuaLIWIOday pue sapo) uoseay (€T Jo ¥ abed) 95 9|qel

401

Appendix G. More Detail On Reason Codes

‘urefe |ed |dy JnoA
A1 pue awreu joodgns ayl @oayd °1SIXd 10U Saop paweu noA joodgns ayL

e joodgns ou aJ waw SS 08

‘urefe o |dv
ay) A pue sadA1 Juswubije pauoddns ayl Jo auo Ayoads ‘paziubodsalun
SI 93000 | | yAUOWISS 0] |[ed JNOA ul apew noA 1sanbal uswubife ay

e uBlje peq al waw ss €08

‘urebe
A1 pue azis ayi 1snlpy ‘abuel jo 1no si palddns noA azis abelols ayL

asea|adAIoWIINSS junowe” peq al waw Ss 208

‘urebe An pue azis aoseds erep ayi i1snlpy
-abuel o 1no sI ayeald 01 bundwane ate noA adeds eep ayl Jo azIs ayl

s@a1ealdAIoWsINSS junowe peq al waw Sss 208

‘urebe
A1 pue azis ay 1snlpy -8buel jo 1no si payddns noA azis abeiols syl

91e20||YAIOWIINSS junowe” peq aJ waw SsS 208

‘abel0]s Jo asn JNOA ul [e21WoU093 alow a(J0 adeds erep
J9bre| e 10 aulyoew [enuia Jabire| e asn -1sanbai abelois Inok Ajsnes
0] 9oeds eyep 10 aulydew [enuiA ay) ul Alowaw ybnoua Jou Si alayl

e abeIols JO 1IN0 a4 waw SS TOS8

'sasn NG| Saweu ay) Jo auo asn 0} BulAn are noA Jaylaym aas 0} osje
MNoayD awll ydes aweu a91AIas anbiun e BuiAjddns are noA jey) ass 01
398Yd pue ‘92uU0 UeY] d10W puLgadLA4asss Buled are noA Jaylaym ass

0] weiboud 1noA xo8yd ‘sisixa Apeale puig 01 BulAn are noA a2iA1as ay L

e SISIX9 a1 AIS SS 60/

‘urebe 1anlas
ay) A1 pue azis abelols [enuIA JNOA aSealou| 9dIAISS Byl JO pJodal e
daay 01 Aressadau sx20|q |023u02 8y} pjoy 01 abelols ybnous Jou sI a1y L

e abel0ls J0 N0 al AIS SS 90/

‘urebe |[ed |dv 8yl Al pue sHwi| UIyum 8q 0}
anjeA ayy abueyd -abuel Jo 1no si payddns noA yibus| aweu adlAIes ay L

e abues Jo 1IN0 a8l AIS”SS 0.

"PUL4DILAUISSS 01 ||Bd INOA Ul awreu 1091102 ay) palddns
NOA 8INS a)eW pue puLgadLAJISSS Pa|[ed NoA ains ag 01 NIVW)ISY
InoA 32ayD punog uaag Jou sey ar1edo| 01 Buikn ate nok adinIes ayL

e punoy 1ou al AIS SS 202

‘urebe An pue 1s1 Js1owered
INoA 3oay) ‘paziubodalun si BuiAiddns are noA adAl adinies ayL

e adAl peq ai AIS SS TOL

‘awreu dnoib abelols Jualayip
e A1l "asn ul Apealje si ubisse 01 BulAn are noA saweu dnoib abeliols ayl

e asn ul aweu aJ4 dbs”ss 629

'sdnolb abelols 1oj sweu D|aOg3 d|geiuud e spuswiwodal
Ngl ‘dnoib abeiols ay Jo aweu ay) 10} aweu yue|g-uou e Alddns
"aweu yue|g-|le ue yum dnoib abelols ayl uels ol bundwane ale nop

e aweu peq al dbs ss 829

uonoy

aunnoy oljoqwAs | oulBWNN

SUOIOY PapuaLIWIOday pue sapo) uoseay (€T Jo G abed) 95 9|qel

z/VM V3R1.0 RSK Programmer's Guide and Reference

402

‘urebe [[ed oA An pue 1si| Ja1awered InoA 3o9yDd
"ISIX8 10U S80p |[ed JNoA ul paioads nNoA aseq erep Jusw||oJud ay L

ire

punoy jou gp aJ Jua Ss

T00T

‘1oddns |Ng| 10e1U0D pajrel
[[ed By} puB 93B3UJWRS BUNNOI TS 01 ||ed © pawiopad |aulay JaAIss ayl

e

|re) owas al 119 SS

G06

‘urebe An pue 1si| 1e1owered INOA MaINSY "SPOylSW [eAsl]al
paziubooal ay} Jo U0 Jou SI padads NoA poylaw [easinal alAq ayL

e

poylaw peq aJl 1|9 SS

06

‘urebe An pue 1s1| 1o1owered INOA malnay
'sadA1 J19|[ed paziubooal ayl Jo auo 10U sI paynads noA adAy J9jed ayl

ire

wel peq al 19 sS

€06

‘urefe |[ea 1noA An pue azis aulydew [enuin INoA asealou|
‘e1ep nd 01 1sanbal INoA ssadoid 0] abelols JualdNsul SI a1ay L

ire

abelols Jo 1IN0 aJ 19SS

¢06

‘urebe |[ed |dy InoA An pue 1s)| Jarewesed InoA 32ay)d
‘abuel Jo 1no si 186 1o Ind 01 Bundwane ate noA erep Jo Junowe ay|

ire

abuel Jo Ino aJs 1|9 SS

T06

‘Juswalels
A1010811p 4D 1SITSSIIIV HIANOIX S,2uUlydeW [enin ayy Aq pasodul

1WI| 8Y) papasdxa aAey NoA 1yl SI ainjie} 1o} uoseal A[@yi| 1sow ay L
‘urefe A1 pue ‘uolreniis sy 1981100 ‘98P0 UOSEal pue uinial 8y 18idialu|
"Y1dSSWO BunnoJl 7SO Wol 8pod uoseal pue uinial syl buikeidsip aq
pINOYS 8j0SUOJ BUIYJBW [BNUIA 3yl "0S 0P 10U PINOJ Ing NoA o) aoeds
ered WA e 01 Aljigessalppe ysijgeiss o) pardwane [suiay JaAIss ayl

ire

|lej ejds al waw” ss

T18

Juawalels A1010a11p 4D 3I¥dSYAAY HIANOIX S,2Ulydew [eniiA

ay1 Ag pasoduwl Jwi| BWOS Papaadxa aAeY NOA 18yl S| ain|ie} 1o) uoseal
A1 1sow ayy ‘ureBe A pue ‘uoien)is ayl 1091100 ‘9P0OD UOSBaAI pue
uimaJ ay) 184didu] ")IdSSWA BUNNOJ SO WOJ) 8P0d UOSEal pue uinal
ay1 Buike|dsip g p|noys 8jOSUOD auUIydeW [ENUIA 8YL °0S Op 10U P|N0Id
INg NoA o} 9oeds Bred A B 81eald 01 pardwsane [sulay JaAIas ayl

ire

[ley 00ds™ a8l waw™ ss

018

‘ureBe [[ed |dy InoA An pue anbiun ag |jim eyl auo 01 awreu joodgns ayl
abuey) ‘aweu siyl Jo joodgns e Buibeuew Apeale sI |aulay JaAIas ayl

e

SIsIxa [oodgns aJ waw Sss

608

‘urebe |[ed |dv ay1 A1 pue Jous
ay) 108100 °[GT‘0] 8bues ayy ul ag 1snw apinoid nok Aax abelols ayl

ire

Aoy peq aJ waw ss

808

"Hoddns NGl 10B0D "pajre) 313130 100449NS 01 |[eD S,[aUIs) JBAISS 8y L

ire

ey pds aJ” waw ss

L08

‘urebe |jea |dy ayl A1 pue bBuiflddns ase noA isjuiod abelols ayl %o9yd
‘pared0|e aq 0] Waas Jou saop aseajal 01 bundwane are nok abelois ayl

ire

J0|[e 10U Bl waw Sss

S08

uonoy

aullnoy

oljoquiAis

RIETNIN

SUOIOY PapuaLIWIOday pue sapo) uoseay (ST Jo 9 abed) 9g 9|qel

403

Appendix G. More Detail On Reason Codes

“Jojesisiulwpe WaisAs

INOA yum 308y "19AIaS S4S ay) ul pauaddey sey Jolla swos sueaw
Algeqgoud ainjre} ayum siyl ‘uado 1day pue awn peo| ye pauado si 3|l sy}
asneodag ‘pajre} |l JUSWI|0IUS 3y} 0} SllIm 0} 1dwane s,|aulay JaAISS ay L

e |le) 81UM Bl Jus SS 0T0T

‘(abeno (,,)NVLA ‘ojdwexa 10j) palanas Sem 1l 0] UOIIBUU0D
uoIeIIUNWWOD 3y} JO UMOP JUSM JI JIYIBYM 39S 0) I9AISS SHS

IN0A 0jul X93yD "IN0 paydeq alam aseq elep Jusw|joius ay) 0] apew
sabueyd ayl 'pasold aq 1ou pinod adeds ereq A ayl Bupjoeq ajy aylL

e [ley 9SO ol Jua Sss 600T

"9zIs 92eds ejep Jabue| e Huisn
11 peojal pue aseq eyep ayl peojun ‘N sI spJodal ayy Bulureluod adeds
elep 8yl "p4odal ay) Uasul 0} ajge|rene abelols ybnous jou S| aIsyL

1J9SU|pJ029Y|[0IUTSS abelols ou a8l Jua SS 800T

'9zIs a2eds ejep Jabie| e Buisn U peojal
pue aseq erep ayl peojun ‘|n} SI splodal ayy Buiureluod adeds elep
3yl 189S Juawj|j0Jua 8y} peo| 01 ajge|rene abelols ybnoua jou si alayl

peoTjjolu3gss abeJo}s ou a8l Jua” ss 800T

‘urefe |jed |dy InoA A1 pue 1s)| Ja1oweled InoA abueyd -adA douip
ay} Jo} anjeA paziubhodalun ue sureluod payoads noA 1si| Jerewered ay

e adAidoip peq a4 Jua ss ,00T

‘urebe |[ed Inok A pue 1s|
Jalawesed InoA abueyd -uasul 01 Bundwaene ase NoA piodal Juswijolud
ay) Jo uoilod erep ayy 1o} Ybus| a|qeidadsdeun ue payoads NOA

119SU|PJ029Y|[0IUTSS yibua| peq al Jud ss 900T

‘ureBe [[ed 1noA An pue 1si|
1a1awesed InoA abueyd “elep Juswjjoius panslial ay) adeld 03 SI |auIdy
JaAIaS Byl Yolym ul Jayng ay 1o} yibus| ajgeidasseun ue paioads noA

199pI02aY||0Iu3SS yibua| peq ol Iud ss 900T

‘ureBe [[ed unoA An pue 1si| Je1awered InoA
abuey) -anpea pieAul ue sureluod payoads noA yibus| sweu ol ayL

peoTjjoiu3ss yibus| peq aJ Jus ss 900T

‘ureBe [[ed InoA An pue |[ed |4V JnoA abueyd 0] pasu Aew noA ‘suonuaiul
InoA uo Buipuada@g ‘padejdal 10U sem 1 aSIMIBYIO ‘aoe|dal 1asul Jua SS
poylaw pasn noA Ji pade|dal sem |ed INoA uo paulodads

NoA plodal Juswijoiud ayl 'SISIXa Apealje LUasul 0] pall NoA plodal ayl

e SISIX@ 281 al Jua ss S00T

‘urebe [[ed unoA An pue iayng indino
Jabure| e Apoads 01 weiboud 1noA abueyd -ybnousa abie| 10U sem Jayng
ndino JnoA asnedaq payesunl) Sem paallal NoA elep juswijolus ayl

e paleaun)) al Jua ss €00T

‘urebe An pue 1s1| J1a1owesed INOA 2oayD "aseq erep juswjoiud
Buoim ayy ul Bujoo| ag ybiw noA 1o ‘Aax plodal Buoim ayy payoads
aney ybiw noA "1SIXd Jou saop paisanbal noA plodal Juswijoius ayl

e punoy Jou 2aJ al Jud SS 200T

uonoy

aunnoy oljoqwAs | oulBWNN

SUOIOY PapuaLIWINday pue sapo) uoseay (€T jo /. abed) 9g 9|qel

z/VM V3R1.0 RSK Programmer's Guide and Reference

404

"aleu 19s JUsW||oIud
1UaJa)Ip & 3s00yd ‘ased ayl si siy1 §| "asodind Jaylo swos Joj joodgns
' se asn ul Apealje sI pasn NoA sweu 18s Juswi|joiua ay1 rey) sjqissod
osle s)| “AnjaJ pue S)wI| 9S8y} ¥98Y pale|olA Sem 3I¥dSHaay HIANOIX

YIM paleloosse 1w swos eyl a|qissod S 1| 'SpJ0dal JuUsWIjoIua ay)
p|oy 01 papaau adeds erep ay) a1ealo 0] 3|ge 10U SeM [aUIaY JaAIaS Byl

e |leJ 1osp a1 Jua SS 8TOT

‘urebe [[ed unoAk An pue (suladid
e 91um Jo ‘sdeyiad ‘] |@3x asn) yewloj-A 01 9| syl abueyd spiodal
A\ 9SN JOU S30p 3|1} JUSW||0IUS BY) Tey) paulwialap [aulsy IaAISS syl

e A JOU oJ Jud sS /10T

‘urebe [eo
InoA Ay pue A1010811p SHS Ue 0] 31} BY) SAO|N "WIISAS 9|I4 pareys ayl
Ul apisal Jou S0P 3|l JUBW||0IUS BYI Tey] paulwialap [aulay JaAIss ayl

e SJS 10U aJ Jud” ss 910T

‘uonoe areudoidde aye)l pue apod uoseal pue uinial ay) arebnsaaul
"8]0SU0D BUIY2BW [enuIA 3yl uo paseadde aaey pinoys 1SIXISWAd

W0J} 8p02 UOSeal pue uin}al 8yl "0S Op O] 3|ge Jou Sem Ing |l
1UBWI||0JUd BY) JO SaINguNe 8yl aAsllal 01 paldwane |sulay JaAIas ayl

e |leJ 1SIXa a1 Jud sS GI0T

‘uonoe ajendoidde axel pue apod uoseal

pue uinal ay) arebnsaAu| '9]0SU0D auIydeW [enUIA 3yl uo paseadde
aABY pINoYs INI0dSWA WoJ) 8p0od UoSeal pue uinial ayl ‘ol Jusawjjoiua
By} Joj siajuiod a1 8yl aAOW 0] d|ge 10U SEM [aUla) JOAISS Byl

e [rey ulod ol Jua” ss ¥TOT

‘uonoe ajendoidde axel pue apod uoseal

pue uinlal ay) a1ebnsanu| "9JOSU0D dulydew [enuIA 3yl uo paeadde
aABY PINOYS NM1IHSWA WOoJ) 89P0 UOSBal pue uinial ayl ‘ol Jusawjjoiud
3y} uado 01 YydIyM Uo JuUN 3Iom e 196 0} 3|qe 10U SeM [UIdY J9AISS By L

e ey nmb al Jua ss €T0T

‘urebe

|1ea JnoA An pue sbuiyy asayl 3oayd -Bunesado aq jou wbiw JaA8s
S4S 8yl Jo ‘Bym 1oy |1} Wswijolus 8y} uado 0] Aressadau suoissiwiad
ay) aAey 10U yBiw JBAISS 8y} 1o ‘193110oul aq ybBiw payoads noA

awreu ayl "pajre} ajy uawijoiua ay) uado 0] idwane s [aulay JaAIas ayL

e ey uado al Jua ss 2T0T

‘urebe [[ed 1noA An pue 1si| Ja1awered INoA oayD ‘paziubodaiun
sem 1s|| Ja1aweled 1noA ul paidads noA poylaw uolasul ay L

e poylaw peq al Jua ss TTOT

uonoy

aunnoy oljoqwAs | oulBwWNN

SUOIOY PapuaLIWIOday pue sapo) uoseay (€T Jo g abed) 9g 9|gel

405

Appendix G. More Detail On Reason Codes

‘pawuopad
sey JaAIas INOA s|[ed 195qe] [Xaydoe)ss JBYI0 ay) pue 1si| Jarawered
INOA 28Yd ‘)nsal siy) 198dxa Jou pIp NoA J| “laguinu eyl Ag umou
a|gel ® Apeal[e sem alayl Usym U 9|gel uone|suel] B paniwgns NoA

Ire

paoe|dal a|gey al 2ed SS

¢0ST

‘9zIs abel0ls S,auIydeW [eNUIA INOA asealou|
1sanbal ayoed InoA ssasoid 01 a|ge|reAe abelols JualdINSUl SI a1dy L

ire

abeIols JO 1IN0 a4 Jed SS

TOST

"3|l} SHS 1081100 3Y) PapeO| NOA aINs ayew 0] ¥28yd ‘siy) 10adxa
LUPIP NOA J| "SPJ0D3J OU SUMRIUOD PareBolIdul NOA 18S JUBWI0IUS By L

ire

Adwaes al Jua ss

9¢0T

‘A|Buimousjun 18s uawjjoiud ayl paddoip nok
Jay1aym 1o 18s juawjjolua InoA peo| 01 10610} nok Jaylaym aas 01 weiboid
InoA »28Yd ‘siy} 108dxa LUpIp NOA §| "Papeo| S18S JUBWI|0JIUd OU aJe d1ayL

ire

S19S OU al Jud SsS

G0t

‘urebe |[ed 1noA An pue paiddns noA sweu ajl} ayl 3oayd
‘ynsal syl 10adxa 10U pIp NoA J “Aldwa Se 189S 1BW|[0JUS By} pazieniul
pue 1l pareald |aulady JaAIBS 3yl 0S ‘ISIXd J,USa0p paljeulwou nNoA sy aylL

ire

3|l Mau ol Iud” sS

vcoT

‘urebe |[ed InoA An pue 1si| Ja1aweled InoA abuey)d
‘anjeA paziubodalun ue surejuod paioads NoA Jajaweled pun 18s ayl

ire

pup peq al Iua ss

€¢0T

"auo juaisues) e Jo

peaisul 18s juawijoiud Juauewlad B asn "sabueyd S HWWOI Jouued NoA
‘WaISAS 914 paJseys ayl ul ajy Bupjoeq ou sey 18S Juswi|olud juaisuen

B 9snedag °19S UBWI(|0JUD JuUdISURI] B 0} Sabueyd JIWWOD 0] PaLl NOA

ire

MSIPp 10U 8l JUd” SS

[440)»

‘uonoe aAnva.I0d areudoidde

9] pue apod UoSeal pue uinjal ay) arebnsaAu| "9]osSu0d aulyoew
[enuIA 8yl uo pake|dsip are WNOISWA WOy 9p0od uoseal pue uinial

Ul "IOM [|IM HWWOI INOA 21042q YISN A4IAOW @NSSI 0] aney ybiw
Jojesisiuiwpe S4S IN0A - papaadxa uaaq sey lwi adedsa|l ayl eyl abie|
0S umoiB sey 18s Juswijolud ay} Jey) S| asned A|ayI| 1Isow syl pajie} sey
189S Juawjjoiua ay} 0} sabueyd ayr HWWOoI 03 Jdwane s,|aulay JaAIaS ay L

ire

[leJ WWod al Jud” SS

TcoT

‘urebe 1 peo| uay) pue 1siiy 18s ayl doup ‘19S Juawijoiud
ay] peojal 03 Jueaw noA j| -urebe [[ed InoA Al pue aweu uaiaylp
B 9s00yD 'siIsIxa Apealje peo| 01 bundwane ase noA 19s Jusw|joiua ayl

ire

SISIXe gp ol Jud” SsS

0coT

‘urebe

[[e9 InoA A1y pue JaAIas SHS 8yl JO yleay ayl %08y "puiy awos Jo 1011
S4S ue sajeoipul Aiqeqoud siy1 ‘paxIom NIJOSWA O1 ||ed S,|aulay IaAIas
9y} asnedag ‘9|l JUsSWI|0Jud 3y} peas 0} S|geun Sem [aUIa) JOAISS Byl

ire

|lej peal al Jud SS

6T0T

uonoy

aullnoy

oljoquiAis

RIETNIN

SUOIOY PapuaLIWOday pue sapo) uoseay (€T Jo 6 abed) 95 9|qel

z/VM V3R1.0 RSK Programmer's Guide and Reference

406

‘ureBe |[eo INoA An pue spod uoseal pue uinsi ay)
a1ebnsaAu| 8|0SU0D auIydeW [eNUIA BU] U0 puno} ag ued |SIXISWa Wolj
8p02 UOSeal pue uinal ayl ‘pajrel 1SIXISWA 01 |[8D S,|aulsy JaAIss ayL

e [le) 1SIX® o1 o d SS LTST

‘ureBe |[ed 1noA An pue Aeire anfea Bej) uInoA ¥oayd ‘paziubodsaiun
s| Aelre anfen Bejy JnoA ul payoads noA sanfea Bejy ays Jo suQ

e [eAl peq al oed ss 9TIST

‘urebe [[ed 1noA A1 pue Aeile sweu Bej) InoA ¥oay)d "paziubodaiun
sI Aelre awreu Bejl 1noA ul paiioads noA saweu Bely ayl Jo auQ

e awreu) peq al oed SS GIST

'uonvallod arendoldde ayl ayew pue isi| Jalawelred
InoA xoay) -s|qeidasseun si paiddns noA yibus| erep INST syl

e |pWsSa peq aJ Jed Sss VIST

‘urebe [jed 1noA An pue 1si| Jarowered
InoA 120100 -abuel Jo 10 sI palddns noA anpea unod Bej ayL

e JUN0Y peq al 9ed ss SIST

‘urebe |jed 1nok An pue
151 J@1dwesed InoA yoay) -abuel Jo 1o si paljddns noA Junod a1Aq ayL

peays|i4ayoedss yibus| peq 8l oed ss 2IST

‘urebe |[ea 1noA An pue 1si| Ja1awered InoA 1981100 -abuel ul si yibus|
ayl ains aq 0] X293y -a|qerdadsseun si palddns noA yibus| sweu a1 ayL

uadpa|i4ayoedss yibus| peq aJ oed SS 2IST

‘uadpa | L43yoe)ss Aq
noA o1 uanlb sem Jeyl auo si Buipinoid are noA uaxol ayl eyl ains ag 0]
1S1] Ja18welted InoA ¥oay) "paziubodal 1ou si palddns noA uaxol 9l ayL

e uay01 peq al Jed ss TIST

‘sabed ul payloads sI azis ayoed ayl
"abuel ul sI 8zIS ayoed INoA 1aylvym 2as 0] uoieluawndop ayl isurebe
1s1| Ja18weled UnoA ¥oayD -abuel Jo 1IN0 SI palidads NoA azis ayoed ayl

e 9zZIS peq al Jed SS 90ST

‘aweu ayoed
Jualaylp e Anoads 0] 1si| Ja1aweled 1noA abueyd Jo ‘U Bunealdal aiolaq
ayoed ayl a1vja@ 'sisIxa Apealje areald 0] BulAn are noA ayoed ayl

e SISIX@ ayJed al Jed SS GOST

‘Aressadau JI abueyd uoneinbyuod e ayew
pue ‘omy ayl aredwod ‘S3IJ¥dS AYIND dD anssi ‘Anus Aio1oaiip 42 InoA
Y08UD "32vdSHaay HI4NOIX AQ 18S NIl SWOS Papasdxa aAey NoA 1ey

S| 818y asned Aay1| 1Isow ayl ‘1l 81eald 0] 3|ge 10U SeMm INg Sa|ll payoed
ay) pjoy 01 aoeds eied WA e a1eald 01 pardwane [aulay JaAIss ay L

e |leJ 1oSp a4 Jed SS ¥0ST

‘pareals sem ayoed ayl
aIns ag 01 Y23y "ISIX8 10U S30P asn 0) Hundwane ase nok ayoes ayL

e punoy Jou ayoded al Jed SS €0ST

uonoy

aunnoy oljoqwAs | oulBwWNN

SUOIOY PapuawWoday pue sapo) uoseay (€T Jo 0T abed) 95 ajqel

407

Appendix G. More Detail On Reason Codes

"azIs
abelols [enuIA INOA 9sealou| “J9XI0M B 0] U0NI3UU0d INoA 01 pale|al
uonewlojul pjoy o) abeiols 81ed0|[e 0] 3|geun Sem [aulay JaAIas ayl

e abel01s Jo 1IN0 ot MM SS T09T

‘urebe An pue ajij ay1 abuey) -Buo| 001 SI B|I} BY] Ul PI0I3J BWIOS ‘SPIOM
Jay10 Ul - Ja)wWIep B INoYIM SalAd GEG'GO Uryl alow Jo uni e S| aiay) eyl
sl @sned a|qeqoud 8yl "Wayl pul Jou pIp INg (S4g 10 ASIpIUIW ‘S4S) Bl

SIND ® JO Biep ay) Ul sIa)iwijap pJodal Jo} Bujoo] sem [aulay JaAIas ayl

e weals ejep peq al oed SS 82GT

‘urebe |[ea ayl

A1} pue 8p0d uoseal pue uinial ay) arebisaAu] "8j0SU0d aulydeWw [enuIA
2y} uo Jeadde QyIYSWa WOJ) 9p0OD UOSEa pue 9p0d ulinlal ayl ‘I peal
10U pIN02 Ing payoed Buiaq ajy ay) uado 0] a|ge Sem |[auIay JaAISS ay L

e [leJ peal al Jed ss 12ST

‘urefe uonelado 1noA An pue ayoed 9 Jablie| e areald
"9|l} JnoA ayded 01 adeds erep ay) ul abelois aal) ybnoua Jou SI alayl

e sp abeiols Jo 1IN0 a4 Jed SS 92ST

‘urebe [ed
3y} A1y pue 1ewlo} piodal s,9)1) 8yl abueyd) 8Yoed JoUURD |aUIBY IBAIBS
3yl °A Jo 4 ueyl Jaylo Tewlo} piodal e sey ayoed 0] pajuem noA 9|l ayl

e wjoal peq al oed ss ¥2ST

‘uonoe arendoidde

9¥e) pue apod UOSEal pue uinial ay) ayebnsanu| "3josu0d aulydew
[enuIA 8yl uo pake|dsip ale NIdOSWA WO} 9PO2 UOSEal pue uinial ayl
‘ayoed 0} pajuem noA 3|1} ay) uado 0} a|ge JoU Sem [auldy JaAISS By L

e |rey uado a1 oed sS €25T

"19SQqe] | XaYde)ss 01 |2 B UWO 10U pPIp NOA Jey) 88s 0] %082 Jo ‘papusiul
noA Q| ajge1 ay) pasn NoA i 8as 0} 1sl| Jalaweled InoA XoayD "I1sIxa jou
saop uadpa | L43yoe)dss 01 [[ed JnoA ul paisanbal noA a|qel uone|suen ayl

e punoy Jou ajgel al Jed SS 22ST

"J1a1juapl a|gel1 oiaz-uou Aue Ajoads
“J21JUBpI B|Ce) PaAISSal S| 0197 ‘019z Sem paloads noA | ajqer ayL

Ire pI a|ger peq ai doeo ss T2ST

1s1] Ja1swelted InoA 1931100 9l Ayl
J0 31AQ 1se| ay) puokaq saob 1o annebau s payoads noA 1asyo alAg ayl

e 189S0 peq al 2ed ss 02ST

"ajly Y} dyded 0} YLD WaIdYIP
e 9sn ‘palglep Huiag jo ssado0id ay ul si paioads noA ayoed ayy
asnedaq payloads noA aji ay) ayded 0} 9|ge 10U SeM [aUldy JOAISS ay L

e ssalfoid Ul a19j9p a4 JBI SS 6TST

‘urebe [ed
InoA A1l uay) pue ‘papuaiul NOA Teym SI 1l 8INs 8g 0} dweu ajl ayl 32ay)d
‘ayoed 0} BulAn are noA |1} 8y} puly 01 S|ge 10U SeM [auUldy JBAISS By L

e punoy Jou 9| a1 Jed SS 8TGT

uonoy

aunnoy oljoqwAs | oulBWNN

SUOIIOY PapuawWoday pue sapo) uoseay (€T Jo TT abed) 95 ajqel

z/VM V3R1.0 RSK Programmer's Guide and Reference

408

‘urebe

A1 pue Anus A1010a11p 42 S,2uUlydeW [BnLIA JBAISS aU] }o9y)D "puelwWod
323404 ayr asn 03 abajiALId 4D uB1dNSUl SeY duIiydew [enuiA J9AISS

8y} Jeyl sI asned Ajy1] 1sow 8yl "0S Op 0} d|geun Sem Ing aulydew
133JOM B 9210} 0} pUBWILIOD 3)Y04 d) SY) SNSSI 0] PaL} [dUISY JOAISS Byl

e [ley 2210) a1 JIM SS TT9T

‘urebe An pue suoneinbiyuod

aulyodew JaxyIom InoA 3oayd Anua A1o1oalip 42 SU ul MOTTY AJNI Buiney
10U J3XJ0M BY} SB Uydns ‘10418 Jusuewad Jo puyj awos palajunodsus

Ng duIydeW IaXI0M B 01 1IINNOD AINI O} pPall) [aulay JoAISS ayL

e [l'eJ UOD2ADNI 8l MIM SS 0T9T

‘1oddns |Ng| 19e1U0D "0S Op 01 9|ge Jou
SeM INQ Jawi B 18S 0] |dY Jawll S,SIND 9SNn 01 pali] |aulay JaAIas ayl

Ire ey Jswiy 8 MM ss 609T

‘urebe

A1 pue uoiresnBiu0d Byl ¥o8yD puBWIWOD HOTOLNYX dYl asn o1 abajiaud
dD waioynsul sey Ajgqeqold auiydsew [enuiA JI9AISS 8yl "Pajie} puewwod
90701NYX BYl INQ sulydew Jaxiom e Bojoine 01 palil |auIay JaAIaS ay L

e |rey Bojoine 8l YIM™ SS 809T

‘ureBe JaAlas ayl A1 pue suonelnbyuod
Slayiom InoA %08y sisanbal uonoauuod ADN| Jamsue 10U pIp JaXI0M
By} Inq auilydsew Jaxiom e Bojoine 01 A|pareadal pall) [aulay JaAIas ayL

e papasodxa saube al YIm SS 109T

‘(pauaddey ainjre} areuIWISIBPUI IBYIO SWOS 10

‘pajre) suondauUod ADN| ‘pajrel buibBojoine) Jamsue LUPIP SBUO |Nj-uou
3y} Jo [N} are SISXI0M BUj} JO |[e Jaylg "0S Op Jou PIN0d INg aulyoew
J9J0M & 0] NOA 10} UOIDBUUOD B 31eJ0|[e 01 PaL] [aUISY JOAISS Byl

e Saleulplogns ou a1 YIM SS 909T

"SSB|0 auIyoRW IX3I0M INOA 31eald 0}

A1essadau spuewwod YIMHOM 8yl Papiwo Jo pajjadssiw noA Jaylaym
99S 01)SY I71140¥d 10adsul Jo ‘urebe |[ed InoA A1 pue 1si| Ja1awered
InoA 10adsu| “paulep 10U SI |2 IN0A ul paloads noA ssejd J1axyiom ay L

e SSe|D” OU” aJ }IM SS G09T

‘urebe A pue 13ing noA 1s1| Je1sweled ay) 10adsu|
"1924100Ul SI 1s]| Ja1owrered InoA ul palddns noA sanfea Bej) ayl Jo aup

e an[eA Be|} peq al JIM Sss 09T

‘urebe A pue 1jing noA 1s1| Jelsweled ay) 10adsu|
"1994100Ul SI 1s]] Ja1owreled InoA ul palnddns noA saweu Bej) ay) Jo auQ

e awreu Bejy peq al YIm SsS €09T

‘urebe
A1 pue [ed |dVy InoA x14 Junod uondo oiaz-ueyi-ssa| e palddns noA

e JUN0Y peq al YIM SS 209T

uonoy

aunnoy oljoqwAs | oulBwWNN

SUOIIOY PapuaWIWoday pue sapo) uoseay (€T Jo 2T abed) 95 ajqel

409

Appendix G. More Detail On Reason Codes

"azIs Jabre| e yum al syl a1eal) "pappe
8 UBd Sa2Ipul alow oN ‘adeds elep s, ay) Ul Ya| WooJ ou SI aIay L

e abelols sp Jo N0 al 1SS 60.T

‘ureBe |[ed |dv 8y}
A1 pue anjea ayl 1981100 -1981109ul S| payddns noA Anoedes Aere syl

e Aoedes peq al 11 sS 80.T

‘urebe [[ed |dv ayl A1 pue
yibus| xapul sy 198100 yibus| 1981100ul ue sey palddns nok xapul ay L

Ire ual xapui_ peq aJ Uy ss 10T

"SI9AJIAS JO 189S IN0A

1d1-94 Ajparoadxaun yo pabho| 1o papuage sey Jap|oy 20| ay) pue
saulyoew fenuia Auew Buowe palteys si al ay) sdeyiad ‘awi jo pouad
a|qeuoseal e ul %90| S,al] INoA ainboe 01 ajgqeun Sem |aulay JaAIBS ay L

Ire Asng suy s 1y ss 90.T

‘urebe A pue Buisn ate InoA sweu
3yl 29y ‘1SIXa Jou saop alejndiuew o} Bundwane are noA sy ayL

Ire punoj lou auy 8l 1y ss S0.T

'SUOID81I0D papaau Aue ayew pue

Anua A1o10alIp 4D 3JvdSHaay HIANOJIX SH pue JaAias InoA 3oy ‘abue|
00] 8q pjnom sadeds erep InoA Jo azis [e10] ay) Jo sadeds erep Auew
00] pajeald aney Ajgqeqold noA ‘pajre} aoeds elep s,al) ayl Jo uoneald

Ire |fey 10sp @l Ly Ss ¥0LT

‘aulyoew [enuiA Jabire| e ul JaAlas INoA
uny -all InoA areald 0] (Alowsw) abelols Arewnd ybnoua Jou SI alayl

e abelols Jo 1IN0 a2l 1SS €0.T

"ali} 8} Jo aoueIsul snoinaid syl a18[ap J0 sweu 3l
1UBJalIp © 8S00YD ‘SISIXe Apealle 1l Ing oLl e a1eald 0] BulAl ase noA

Ire SISIXa 8l 8l LI ss 20.LT

‘'sabed ul payoads si azis
al) ayl ‘abuel ul SI 8ZIS INOA Jaylaym 23S 0] uoneluawnaop ayl 1surebe
1s1| Ja1awelded UnoA ¥oay) -abuel Jo N0 SI paynads NoA azis all ayL

Ire 9zIs peq as Uy ss T0LT

‘pajrey 1dwiane uondauUUod INOA duiydew

19X10M 38U} 3l8|9p 0] pueWWOD SSY1I730 YINYOM 10 313730 YINYOM

By} pasn Joresado ue paysijgeisa Huidag sem uondaUU0I dYl 3jIYM Ing
‘auiyoew Ja)Jom B 0} UOI128UU0d & aredo|e o] paldwane weiboid INoA

e 219|9p Jado al YIMm SsS €T9T

"1asn

Buny e sI aulydew JaxJoM ay ey SI asned Ayl 1sow ayl ‘uo pabbo)
[IIS SeMm JaXI0M 3y} Teyl pamoys puewwod AYInd dJ ayr pouad noswn
e Ja)e Ing ‘Yo pabbo| ag 01 aulydew iaxiom ayl 1oy Bunrem uebaq pue
13)JOM B 1JO 8240 O} puBLIWOD 3JY04 dJ dYl PaNSSI |auIdy JanIas ay L

e INOBWIY 92I0) a1 }IM SS 2T9T

uonoy

aunnoy oljoqwAs | oulBWNN

SUOIOY PapuawWoday pue sapo) uoseay (€T Jo £T abed) 95 ajqel

z/VM V3R1.0 RSK Programmer's Guide and Reference

410

Appendix H. Messages

Here is a summary of messages and recommended recovery actions.

Generally Applicable Messages

BKWO0000I Operation completed OK.

Explanation: The command you issued completed
normally.

System Action: The system performed the action you
requested.

System Programmer Response: Nothing.

BKWOOO1E Not authorized.

Explanation: You are not authorized to issue the
command you attempted.

System Action: The system declined to execute the
command you supplied, responding with this error
message instead.

System Programmer Response: The system
programmer can use the AUTH command set to grant
you permission to perform the requested operation.

BKWOOO2E Enter a command.
Explanation: You entered a null command.
System Action: The system did nothing.

System Programmer Response: Enter a non-null
command.

BKWOOO3E Syntax error.

Explanation: There is a syntax error in the command
you issued.

System Action: The system did nothing.

System Programmer Response: Refer to the syntax
diagram for the command you issued, repair its syntax,
and reissue the command.

BKWOOO4E Unrecognized command.

Explanation: The command you entered is not
recognized.

System Action: The system did nothing.

System Programmer Response: Refer to the
command documentation and submit a recognized
command.

© Copyright IBM Corp. 1999, 2001

BKWOOO5E Out of storage.

Explanation: Not enough virtual storage was available
to perform the operation you requested.

System Action: The system backed out any partial
results and returned to the state it had just prior to your
issuing the failing command.

System Programmer Response: Define a larger
virtual machine.

BKWOO0O0O7E RC=&1 RE=&2 from routine &3

Explanation: The displayed routine produced the
given return and reason code.

System Action: The system did not complete the
operation you requested.

System Programmer Response: Locate the
documentation for the displayed routine and research
the return and reason code. Take appropriate
corrective action.

BKWO0O010E DMSQEFL returns CP_product &1
CP_level &1

Explanation: CSL routine DMSQEFL returned the
displayed CP product code and CP level code.

System Action: The server kernel refuses to start
because CP is too far back-level.

System Programmer Response: Upgrade to a newer
release of z/VM.

BKWO0O011E DMSQEFL returns CMS_level &1

Explanation: CSL routine DMSQEFL returned the
displayed CMS level.

System Action: The server kernel refuses to start
because CMS is too far back-level.

System Programmer Response: Upgrade to a newer
release of z/VM.

BKWO0O012E Insufficient VM/ESA functional level to
run RSK - returning

Explanation: The level of VM/ESA is insufficient to
support execution of the reusable server kernel.

System Action: The server kernel refuses to start.

System Programmer Response: Upgrade to a newer
release of z/VM.

411

BKWOO13| CMS 13 detected YMB1422 | System Programmer Response: Install the named
etected - ensure 1S APAR for best results (the message will still appear

applied even after the APAR is applied).

Explanation: The reusable server kernel detected
CMS 13. For best results, CMS 13 must have the
displayed APAR applied. The server kernel will work if
the APAR is not applied but it might not work well.

System Action: The server kernel starts anyway.

412 z/vM V3R1.0 RSK Programmer's Guide and Reference

CONFIG Service Messages BKWO0100E Operation now irrelevant.

Explanation: The configuration variable whose value
you changed is relevant only before PROFILE RSK issues
RUNSERV. After RUNSERV, the server kernel no longer
pays attention to the value of this variable.

System Action: The system did nothing.

System Programmer Response: Change this
configuration variable before RUNSERV.

Appendix H. Messages 413

Line Driver Messages

BKWO200E Service not found.

Explanation: The service you are attempting to
manipulate does not exist.

System Action: The system did nothing.

System Programmer Response: Correct the name of
the service, or use the SERVER SERVICES command to
determine whether the service is known to the server
kernel.

BKWO0201E Subtask not found.

Explanation: The subtask you attempted to
manipulate does not exist.

System Action: The system did nothing.

System Programmer Response: Use the line driver's
LIST command to confirm the existence of the subtask
you are attempting to manipulate. Also, confirm that
you have supplied the correct line driver name in your
command. Make appropriate corrections and resubmit
the command.

BKWO0202E Stop of self is prohibited.

Explanation: You asked a self-sourced line driver to
stop itself. A self-sourced driver cannot stop itself.

System Action: The system did nothing.

System Programmer Response: You probably meant
to stop some other subtask. Correct the subtask
number and try again.

BKWO0203I Subtask asked to STOP.

Explanation: The line driver has sent STOP
messages to the threads running this subtask.

System Action: The subtask will stop when all such
threads respond with stop acknowledgements.

System Programmer Response: Wait for the subtask
to stop.

BKWO0204! Subtask killed.

Explanation: The line driver has deleted the threads
of the subtask.

System Action: The server kernel has stopped a
subtask in a forceful way. Threads running the service
were not given an opportunity to complete their work
normally.

414 z/vM V3R1.0 RSK Programmer's Guide and Reference

System Programmer Response: Nothing.

BKWO0205E Prefix already in use.

Explanation: The prefix you requested is already in
use by this line driver.

System Action: The system did nothing.

System Programmer Response: Select a different
prefix and reissue the command.

BKWO0206E Service INIT routine failed - RC=&1
RE=&2.

Explanation: During handling of a START command,
the server kernel drove the service's INIT routine but
the INIT routine produced a nonzero return and reason
code.

System Action: The system refused to start the
service.

System Programmer Response: Use the
documentation of the service itself to interpret the return
and reason code. Take appropriate corrective actions
and try the START again.

BKWO0207E Start of self is prohibited.

Explanation: You asked a self-sourced line driver to
start itself.

System Action: The system refused to do this. The
server kernel starts self-sourced line drivers
automatically as part of server initialization.

System Programmer Response: You probably
submitted the START command to the wrong service or
attempted to start the wrong service. Make the
appropriate corrections in your command and issue it
again.

BKW0208I Subtask is handling no clients.

Explanation: The subtask you attempted to
interrogate through QUERY is not handling any clients
right now.

System Action: The system did nothing.

System Programmer Response: None needed.

SERVER Service Messages

BKWO0300I Shutdown initiated.

Explanation: You issued SERVER STOP and the server
kernel is attempting to stop the server.

System Action: The line drivers are attempting to stop
all services normally. When all services are stopped
shutdown of the server will complete.

System Programmer Response: None needed.

BKWO0301l Monitor buffer at &1.&2, &3 rows, &4 free

Explanation: The message indicates the location in
storage of the server kernel's monitor buffer.

System Action: None, other than having issued the
message.

System Programmer Response: None needed. The
CP DISPLAY command can be used to display the
monitor buffer. The MONITOR DISPLAY command can be
used to display specific monitor rows without knowing
their addresses in memory.

Appendix H. Messages 415

USERID Service Messages

BKWO0400E Reload failed - DMSOPEN or DMSREAD
RC=&1 RE=&2.

Explanation: The server kernel was not able to reload
the user ID mapping file because either DMSOPEN or
DMSREAD failed with the displayed return and reason
code.

System Action: The previous user ID mapping
remains in effect.

System Programmer Response: Research the return
and reason code and take the appropriate action. Also,
issue SERVER CONFIG and look at the value of the
UMAP_FILE variable and see if it references the file you
expected.

BKWO0401l &1 &2 &3 maps to &4

Explanation: The user ID mapping facility maps your
inputs to this output.

System Action: None, other than displaying the
mapping.

System Programmer Response: If the mapping
needs to be corrected, use XEDIT to change the
mapping file, then issue USERID RELOAD.

If you need to update the user ID map, edit the
mapping file and issue USERID RELOAD.

BKWO0403E Open of UMAP_FILE failed - server will
not start.

Explanation: The server kernel attempted to read the
user ID mapping file as part of its startup processing,
but was not able to read the file.

System Action: Startup fails and the RUNSERV
command will complete with a nonzero return code.

System Programmer Response: The configuration
variable UMAP_FILE is probably not set correctly. Make
sure it points to the user ID mapping file and then try
again to start the server.

BKWO0404E Reload ignored some records due to
syntax errors

Explanation: The server kernel attempted to reload
the user ID mapping file, but while reading the file it
found some records having invalid syntax.

System Action: The load finished, ignoring the bad
records. Message BKWO0405E was issued for each bad
record.

System Programmer Response: Use the record
numbers named in message BKWO0405E to locate to
locate the bad records. Repair each one.

BKWO0402E RC=&1 RE=&2 mapping &3 &4 &5

Explanation: ssUseridMap produced the displayed
return and reason code when interrogating the user ID
map with the inputs you provided.

System Action: None, other than displaying the error
message.

System Programmer Response: Research the return
and reason code and take appropriate corrective action.

416 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKWO0405E Record &1 in UMAP_FILE has bad
syntax

Explanation: The server kernel found a bad record in
the user ID mapping file. This message announces the
record number of the bad record.

System Action: The server kernel skipped the bad
record and continued to load the user ID mapping file.

System Programmer Response: Repair the bad
record.

TCP and UDP Line Driver
Messages

BKWO0500I A-block &1 Client &2 &3 done, lifetime &4
msec

Explanation: A TCP or UDP subtask has finished
handling the client at the displayed port and IP address.
The transaction lasted for the displayed number of
milliseconds.

System Action: The system handled the client.

System Programmer Response: None.

BKWO506E A-block &1 C-block &2 errno &3
ioctl(FIONBIO) failed

Explanation: The TCP line driver received the
displayed errno value when it attempted to set a socket
to blocking 1/0.

System Action: The line driver closed the connection
to the client but continues handling work for other
clients.

System Programmer Response: Research the errno
and determine whether a configuration change is
necessary.

BKWO0501I A-block &1 Client &2 &3 done, inbytes
&4, inrate &5 KB/s

Explanation: A TCP or UDP subtask has finished
handling the client at the displayed port and IP address.
The data rate from the client was as displayed.

System Action: The system handled the client.

System Programmer Response: None.

BKWO508E A-block &1 C-block &2 ThreadCreate
RC=&3 RE=&4 failed (major)

Explanation: The TCP or UDP line driver was not
able to create a CMS thread when one was absolutely
required.

System Action: The line driver ended the subtask.

System Programmer Response: Research the return
and reason code and take corrective action.

BKWO0502! A-block &1 Client &2 &3 done, outbytes
&4, outrate &5 KB/s

Explanation: A TCP or UDP subtask has finished
handling the client at the displayed port and IP address.
The data rate to the client was as displayed.

System Action: The system handled the client.

System Programmer Response: None.

BKWO0504I A-block &1 Client &2 &3 started, C-block
&4

Explanation: A TCP or UDP subtask has begun
handling the client at the displayed port and IP address.

System Action: The system is beginning to handle
the client.

System Programmer Response: None.

BKWO509E A-block &1 C-block &2 ThreadCreate
RC=&3 RE=&4 failed (minor)

Explanation: The TCP or UDP line driver was not
able to create a CMS thread when it felt one would be
helpful, but there appear to be enough suitable threads
to take up the slack.

System Action: The line driver uses the threads it's
already created to handle the new client.

System Programmer Response: Research the return
and reason code and take corrective action.

BKWO505E A-block &1 errno &2 accept failed

Explanation: The TCP line driver received the
displayed errno value when it attempted to accept a
connection from a client.

System Action: The line driver did not accept the
connection but continues handling work for other clients.

System Programmer Response: Research the errno
and determine whether a configuration change is
necessary.

BKWO0510E A-block &1 errno &2 select()-start failed

Explanation: The TCP line driver was not able to start
a socket select() function.

System Action: The line driver stops the affected
subtask. Clients already connected are permitted to
complete their transactions, but no new clients are
served.

System Programmer Response: Research the errno
and take corrective action.

BKWO511E A-block &1 rsn &2 QueueReceiveBlock
RC=&3 RE=&4 failed

Explanation: The TCP or UDP line driver was not
able to receive a message from a CMS queue.

System Action: The line driver stops the affected
subtask immediately.

System Programmer Response: Re-IPL CMS. If the
problem persists, contact IBM support.

Appendix H. Messages 417

BKWO0512E A-block &1 errno &2 select() failed

Explanation: The TCP line driver started a socket
select() function but the function completed with error.

System Action: The line driver stops the affected
subtask. Clients already connected are permitted to
complete their transactions, but no new clients are
served.

System Programmer Response: Research the errno
and take corrective action.

BKWO0513E Port number must be in range [0..65535].

Explanation: Your START command specified an
out-of-range port value.

System Action: None, other than issuing an error
message.

System Programmer Response: Correct your START
command and try again.

BKWO0514E Socket count must be in range
[50..2000].

Explanation: Your START command specified an
out-of-range value for the number of sockets permitted.

System Action: None, other than issuing an error
message.

System Programmer Response: Correct your START
command and try again.

BKWO0515E Maximum subtask number would be
exceeded.

Explanation: The TCP or UDP line driver was not
able to start a new subtask because it has run out of
subtask numbers.

System Action: The subtask was not started.

System Programmer Response: Restart the server.

BKWO516E Creation of subtask controller thread
failed.

Explanation: The TCP or UDP line driver attempted to
create a thread to control the new subtask but was not
able to do so.

System Action: The subtask was not started.

System Programmer Response: Re-IPL CMS. If the
problem persists, contact IBM support.

418 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKWO0517E Creation of TCP/IP socket group failed.

Explanation: The TCP or UDP line driver was not
able to connect to the TCP/IP service machine.

System Action: The subtask was not started.

System Programmer Response: The usual cause
here is that the name of the TCP/IP machine was
specified incorrectly. Another cause might be that the
TCP/IP machine you are attempting to use is configured
with PermittedUsersOnly but your server is not in the
permitted users list. Check your START command and
your TCP/IP configuration carefully and try your
command again.

BKWO0518E Creation of listen socket failed.

Explanation: The TCP or UDP line driver was not
able to create the socket on which it will listen for
connections from clients.

System Action: The subtask was not started.

System Programmer Response: Check your TCP/IP
configuration.

BKWO0519E Setting listen socket to
SO_REUSEADDR failed.

Explanation: The TCP or UDP line driver was not
able to set the listen socket to enable option
SO_REUSEADDR.

System Action: The subtask was not started.

System Programmer Response: Check your TCP/IP
configuration.

BKWO0520E Setting listen socket to nonblocking
failed.

Explanation: The TCP line driver was not able to set
the listen socket to non-blocking 1/0.

System Action: The subtask was not started.

System Programmer Response: Check your TCP/IP
configuration.

BKWO0521E bind() for listen socket failed.

Explanation: The TCP or UDP line driver was not
able to bind the port number you specified in your START
command to the IP address you specified in your START
command.

System Action: The subtask was not started.

System Programmer Response: The most likely
cause is that the port number is in the reserved port
number list in your TCP/IP configuration but the user ID
in which your server is running is not listed as one of
the user IDs that can bind the reserved port. Check
your TCP/IP configuration and try again if this was the
situation. Another possible cause is that some other

server on your system has already bound that port but
did not set its listen socket to SO_REUSEADDR. If this is
the case, contact your TCP/IP support programmer for
help in locating the offending server, or use another port
number in your own START command.

BKWO0522E listen() for listen socket failed.

Explanation: The TCP line driver was not able to set
the backlog queue size for its listen socket.

System Action: The subtask was not started.

System Programmer Response: Check your TCP/IP
configuration.

BKWO0523I Instance STOP requested.

Explanation: In response to your STOP command, the
TCP or UDP line driver has asked an instance thread to
stop.

System Action: The line driver will close the
connection to the client after the instance acknowledges
the STOP request.

System Programmer Response: None.

BKWO0524E Wait expired for STOP.

Explanation: You asked the TCP or UDP line driver to
stop a subtask, so it initiated the stop and waited for the
subtask to quiesce, but the quiesce wait time ran out.

System Action: The stop did not complete.

System Programmer Response: The stop remains
pending and will complete eventually if all of the
instance threads cooperate. If you require the subtask
to stop immediately, reissue the command using the
NOW option.

BKWO0525E A-block &1 C-block &2 read start failed -
errno &3

Explanation: The TCP line driver was not able to start
a socket read() for the displayed client, or the UDP line
driver was not able to start a socket recvfrom().

System Action: The TCP line driver closes the
connection to the client; the UDP line driver ends the
subtask.

System Programmer Response: Check your TCP/IP
configuration.

BKWO0526E A-block &1 C-block &2 write start failed -
errno &3

Explanation: The TCP line driver was not able to start
a socket write() for the displayed client, or the UDP line
driver was not able to start a socket sendto().

System Action: The TCP line driver closes the
connection to the client; the UDP line driver ends the
subtask.

System Programmer Response: Check your TCP/IP
configuration.

BKWO05271 A-block &1 stopped.

Explanation: You asked the TCP or UDP line driver to
stop a subtask.

System Action: The subtask has stopped.

System Programmer Response: None.

BKWO0528I A-block &1 C-block &2 stopped.

Explanation: You asked the TCP or UDP line driver to
end its relationship with a specific client.

System Action: The relationship is ended.

System Programmer Response: None.

BKWO0529I Subtask identifier is out of range.

Explanation: You asked the TCP or UDP line driver to
stop a subtask whose identifier is zero.

System Action: None, other than to issue an error
message.

System Programmer Response: Specify a nonzero
subtask identifier.

BKWO530E A-block &1 C-block &2 recv failed -
errno &3

Explanation: The UDP line driver attempted to receive
a datagram using recvfrom(), but the call failed.

System Action: The UDP line driver stops the subtask
and displays the errno value it encountered.

System Programmer Response: Research the errno
value and restart the subtask.

BKWO531E A-block &1 C-block &2 sendto failed -
errno &3

Explanation: The UDP line driver attempted to send a
datagram using sendto(), but the call failed.

System Action: The UDP line driver stops the subtask
and displays the errno value it encountered.

System Programmer Response: Research the errno
value and restart the subtask.

BKWO0532E No userid mapping for IP address &1 -
ignored

Explanation: The TCP or UDP line driver attempted to
map an IP address to a user ID but was not able to do
so.

System Action: Because the line driver's NOMAP
configuration parameter was OFF, the line driver
ignored the client.

Appendix H. Messages 419

System Programmer Response: Update the user ID
mapping file or set the line driver's NOMAP parameter
ON.

420 z/vM V3R1.0 RSK Programmer's Guide and Reference

SGP Service Messages

SGP_FILE. You might have specified the wrong file
name.

BKWO0600! No storage groups found.

Explanation: Your LIST command found no storage
groups.

System Action: None, other than issuing the error
message.

System Programmer Response: None. If you
expected to find storage groups, use the SERVER CONFIG
command to check the value of configuration variable

BKWO601E Open of SGP_FILE failed - server will
not start.

Explanation: The server kernel could not find the
storage group configuration file.

System Action: The server kernel will not start and
the RUNSERV command will see a nonzero return code.

System Programmer Response: Check your PROFILE
RSK to make sure you set configuration variable
SGP_FILE correctly.

Appendix H. Messages 421

RSK SUBCOM Messages

BKWO0700E Commands cannot be issued - server
not started yet

Explanation: Your PROFILE RSK contains commands
other than CONFIG before RUNSERV.

System Action: The non-CONFIG commands are
ignored.

System Programmer Response: Reorganize your
PROFILE RSK.

422 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKWO701E The server has already been started

Explanation: You attempted RUNSERV more than once
in your PROFILE RSK.

System Action: The extraneous RUNSERV commands
are ignored.

System Programmer Response: Reorganize your
PROFILE RSK.

BKWO0702E RUNSERYV failed
Explanation: The server kernel was unable to start.

System Action: The server did not start. Other error
messages were issued to explain the reason. PROFILE
RSK will see a nonzero return code from RUNSERV.

System Programmer Response: Investigate the
reason for the failure and take corrective action.

AUTH Service Messages

BKWO800E The class specified already exists

Explanation: You tried to create an object class but
the object class already exists.

System Action: None.

System Programmer Response: Choose a different
name for your new object class.

BKWO801E Unable to read the authorization files

Explanation: The server kernel could not read the
authorization database.

System Action: The server kernel has disabled all
calls to the authorization API.

System Programmer Response: Perhaps an SFS
failure or DASD failure has occurred. Contact your
system programmer.

BKWO0802E Unable to write to the authorization files

Explanation: The server kernel could not write the
authorization database.

System Action: The server kernel has disabled all
calls to the authorization API.

System Programmer Response: Perhaps an SFS
failure or DASD failure has occurred. Contact your
system programmer. When access to the files is
repaired, issue AUTH RELOAD.

BKWO803E Too many operations or options
specified

Explanation: You have exceeded the limit on options
or operations for this particular command.
System Action: The command was not processed.

System Programmer Response: The most likely
cause is that you exceeded the limit of 32 operations
per object class. Reduce the number of operations and
try again.

BKWOB804E The length of the object name is out of
range

Explanation: The object name you specified is too
long.

System Action: The command was not processed.

System Programmer Response: The object name
must be 256 characters or less. Reduce its length and
try again.

BKWOS805E The class specified does not exist

Explanation: Your command refers to an object class
which does not exist.

System Action: The command was not processed.

System Programmer Response: Change the class
name. You might also have inadvertently loaded the
wrong authorization set. Use SERVER CONFIG to examine
the names of the authorization files.

BKWOB806E The object specified already exists

Explanation: You tried to create an object but the
object already exists.

System Action: The command was not processed.

System Programmer Response: Choose a different
name for your object. You might also have
inadvertently loaded the wrong authorization set. Use
SERVER CONFIG to examine the names of the
authorization files.

BKWOS807E At least one of the options specified is
unrecognized

Explanation: You supplied a command containing
options that are unrecognized.

System Action: The command was not processed.

System Programmer Response: Check the syntax
diagram for the command you entered, make any
necessary corrections, and try again.

BKWO808E The object specified does not exist

Explanation: The object you attempted to manipulate
does not exist.

System Action: The command was not processed.

System Programmer Response: Check the
command to be sure you are referring to the correct
object name. You might also have inadvertently loaded
the wrong authorization set. Use SERVER CONFIG to
examine the names of the authorization files.

BKWO809E The length of the userid specifed is out
of range

Explanation: You specified a user ID that is too long.
System Action: The command was not processed.

System Programmer Response: The user ID must
be 64 characters or less in length. Change your
command and try again.

Appendix H. Messages 423

BKWO0810E No rules exist for the userid specified

Explanation: You asked for a display of the rules for a
given user and object, but there were no such rules in
the authorization database.

System Action: None.

System Programmer Response: None.

BKWO0811E Unable to open the authorization files

Explanation: The server kernel was not able to open
the authorization data files.

System Action: The authorization API is disabled.

System Programmer Response: Perhaps an SFS
failure or DASD failure has occurred. Contact your
system programmer. When access to the files is
repaired, issue AUTH RELOAD.

BKWO0812E Operation limit for the class specified
has been exceeded

Explanation: You attempted to add a new operation to
a class, but it would result in exceeding the limit of 32
operations per object class.

System Action: The command was not processed.

System Programmer Response: Depending on your
situation, perhaps a new object class would solve your
problem.

BKWO0813E No classes exist for the match key
specified

Explanation: You asked for a list of the object classes
that match your key, but no such object classes exist.
System Action: No object classes were displayed.

System Programmer Response: Try a different
match key. You might also have inadvertently loaded
the wrong authorization set. Use SERVER CONFIG to
examine the names of the authorization files.

424 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKWO0814E No objects exist for the match key
specified

Explanation: You asked for a list of the objects that
match your key, but no such objects exist.
System Action: No object names were displayed.

System Programmer Response: Try a different
match key. You might also have inadvertently loaded
the wrong authorization set. Use SERVER CONFIG to
examine the names of the authorization files.

BKWO0815E No userids exist for the object specified

Explanation: You asked for a list of the user IDs for
which there exist rules for the specified object, but there
are no rules for the specified object.

System Action: No user IDs were displayed.

System Programmer Response: You might have
inadvertently loaded the wrong authorization set. Use
SERVER CONFIG to examine the names of the
authorization files.

BKWO0816E No rules exist for the userid specified

Explanation: You asked for the rule for the specified
user ID and object, but there is no such rule.

System Action: No rule is displayed.

System Programmer Response: You might have
inadvertently loaded the wrong authorization set. Use
SERVER CONFIG to examine the names of the
authorization files.

BKWO0817E Open of authorization data failed -
server will not start.

Explanation: The server kernel attempted to open the
authorization files as part of server startup, but the open
failed.

System Action: The server will not start and RUNSERV
will be given a nonzero return code.

System Programmer Response: Correct PROFILE RSK
and try again.

CP Service Messag es BKWO0901E CP response was truncated.

Explanation: The server kernel passed your command
to CP, and CP executed the command, but the
BKWO0900l RC=&1 from CP. response was too long for the server kernel to capture.

System Action: The command was executed, but

Explanation: CP produced the displayed return code ! X
some of its response was not displayed.

when it processed your command.
System Programmer Response: Use the displayed

. portion of the response to determine whether correct
System Programmer Response: Investigate the results were obtained.

return code and take appropriate action.

System Action: The command was executed.

BKWO0902E CP command was too long.

Explanation: The CP command you attemped to
execute was too long.

System Action: The command was not executed.

System Programmer Response: The length limit is
240 characters. Shorten the command and try again.

Appendix H. Messages 425

CMS Service Messag es BKW1001E RC=&1 RE=&2 acquiring CMS mutex.

Explanation: The server kernel was not able to
acquire the mutex it needs to pass commands to CMS.

BKW1000I RC=&1 from CMS. System Action: The CMS command was not
Explanation: CMS produced the displayed return code executed.

when it processed your command. System Programmer Response: Contact IBM
System Action: The command was executed. support.

System Programmer Response: Investigate the
return code and take appropriate action.

426 z/VM V3R1.0 RSK Programmer's Guide and Reference

MSG Line Driver Messages

BKW1100E No userid mapping for user &1 at &2 -
message ignored

Explanation: The MSG line driver used ssUseridMap
to map the message's origin user ID and node into a
local user ID, but ssUseridMap was not able to perform
a mapping because no applicable entry was found in
the user ID mapping file.

System Action: The MSG line driver ignored the
message.

System Programmer Response: Adjust the user ID
mapping file if necessary, or set configuration parameter
MSG_NOMAP to ON so as to let the MSG driver accept the
message anyway.

Appendix H. Messages 427

SPOOL Line Driver Messages

BKW1200E (file &1) DIAG 14 (order) failed - RC=&2 -
file held

Explanation: The SPOOL line driver attempted to use
DIAG X'0014' to move the displayed spool file to the
front of the reader queue, but it was unable to do so.

System Action: The SPOOL driver placed the file in
USER HOLD state.

System Programmer Response: The DIAG X'0014'
return code appears in the message text. Investigate
the return code and take appropriate action.

BKW1201E (file &1) DIAG 14 (select next) failed -
RC=&2 - file held

Explanation: The SPOOL line driver attempted to use
DIAG X'0014' to select the next file in the reader
queue, but it was unable to do so.

System Action: The SPOOL driver placed the file in
USER HOLD state.

System Programmer Response: The DIAG X'0014'
return code appears in the message text. Investigate
the return code and take appropriate action.

BKW1202E (file &1) Unrecognized spool file format -
file held

Explanation: The SPOOL line driver did not recognize
the format of the displayed spool file.

System Action: The SPOOL driver placed the file in
USER HOLD state.

System Programmer Response: The file is probably
not one that the server kernel is prepared to handle.
Transfer it out of the server's reader queue, locate the
sender, and find out what his intention was.

BKW1203E (file &1) DIAG 14 (read SPLINK) failed -
RC=&2 - file held

Explanation: The SPOOL line driver attempted to use
DIAG X'0014' to read the next buffer of spool file data,
but it was unable to do so.

System Action: The SPOOL driver placed the file in
USER HOLD state.

System Programmer Response: The DIAG X'0014'
return code appears in the message text. Investigate
the return code and take appropriate action.

428 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKW1204E (file &1) No userid mapping for user &1
at &2 - file held

Explanation: The SPOOL line driver used
ssUseridMap to map the spool file's origin user ID and
node into a local userid, but ssUseridMap was not able
to perform a mapping because no applicable entry was
found in the user ID mapping file.

System Action: The SPOOL driver placed the file in
USER HOLD status.

System Programmer Response: Adjust the user ID
mapping file if necessary, or set configuration parameter
SPL_NOMAP to ON so as to let the SPOOL driver accept
the file anyway.

BKW1205E Punch via DIAG A8 failed - RC=&1

Explanation: The SPOOL driver attempted to punch a
response through DIAG X'00A8' but was not able to
do so.

System Action: The response was not sent.

System Programmer Response: The return code
from DIAG X'00A8' is displayed in the message.
Investigate the return code and take appropriate action.
The most likely cause is that spool space is full.

BKW1206E Could not encode instance data stream

Explanation: The service in which the response
originated used the correct encoding procedure to
generate a record-oriented response for its client, but
the response contains a record longer than 65,535
bytes.

System Action: The response was not sent to the
client.

System Programmer Response: This is a server
defect, not an IBM defect. Contact the server author.

BKW1207E (file &1) Unrecognized spool file format -
file transferred to &2

Explanation: The SPOOL line driver did not recognize
the format of the displayed spool file.

System Action: The SPOOL driver transferred the file
to the named user ID.

System Programmer Response: The file is probably
not one that the server kernel is prepared to handle.
Locate the sender and find out what his intention was.

Enrollment APl Messages

BKW1300E Enrollment set &1, record &2 skipped

Explanation: The server kernel encountered an
unrecognizable record in the enroliment data file as it
was loading the file into the data space. It skipped the
record.

System Action: The record was skipped, but loading
of subsequent records continued.

System Programmer Response: Unload the

enroliment set and examine the enroliment file with
XEDIT. Repair the record so that it conforms to the

format specified in the enrollment file appendix of this

book.

Appendix H. Messages

429

MONITOR Service Messages

BKW1400E Matching monitor row not found.

Explanation: You asked the MONITOR service to
display the monitor rows matching the tokens you
specified, but no such monitor row exists.

System Action: None.

System Programmer Response: None.

BKW1401E DIAG DC RC &1 starting APPLDATA
monitoring

Explanation: The server kernel tried to establish a CP
APPLDATA buffer but was not able to do so. DIAG
X'00DC' returned the displayed return code.

System Action: CP will not collect the server virtual
machine's APPLDATA. The server virtual machine will
run normally.

System Programmer Response: If you want CP to
collect the server virtual machine's APPLDATA, make
sure OPTION APPLMON is enabled in the server virtual
machine's CP directory entry.

430 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKW1402E Monitor adjusted to &1 kernel rows and
&2 bytes user data

Explanation: The server kernel tried to set up the
monitor buffer according to the configuration you
specified, but the resulting buffer ended up exceeding
CP's limit on the size of a monitor buffer.

System Action: The server kernel resized the monitor
buffer and displayed the actual buffer configuration in
the message text.

System Programmer Response: None.

BKW1403I No free monitor row for &1

Explanation: Some operator command or API call
caused the server kernel to attempt to allocate another
monitor row, but the monitor buffer cannot
accommodate any more monitor rows.

System Action: The server kernel will not accumulate
monitor data for the displayed component, but operation
of the server continues.

System Programmer Response: If possible, increase
the number of monitor rows.

CACHE Service Messages BKW1500E No file caches found.

Explanation: You asked the CACHE service to display
a list of the file caches it is managing, but it is
managing no file caches.

System Action: None.

System Programmer Response: None.

Appendix H. Messages 431

IUCV Line Driver Messages

BKW1600I Instance STOP requested.

Explanation: The IUCV line driver has asked an
instance thread to STOP.

System Action: The server kernel will sever the path
to the client after the instance thread acknowledges the
STOP request.

System Programmer Response: None.

BKW1601E A-block &1 rsn &2 QueueReceiveBlock
RC=&3 RE=&4 failed

Explanation: The thread controlling an IUCV subtask
detected the displayed return and reason code when it
attempted to receive a message from its CMS queue.

System Action: The server kernel terminates the
subtask.

System Programmer Response: Research the
displayed return and reason code and take appropriate
corrective action.

BKW1602I A-block &1 Client &2 started, C-block &3

Explanation: The IUCV line driver has accepted a
connection from a client.

System Action: The server kernel handles the client.

System Programmer Response: None.

System Programmer Response: None.

BKW1605! A-block &1 Client &2 done, outbytes &3,
outrate &4 KB/s

Explanation: The IUCV line driver was handling a
client, and the connection to the client has ended. The
server experienced the displayed output byte count and
output data rate.

System Action: Nothing.

System Programmer Response: None.

BKW1606E Wait expired for STOP.

Explanation: You issued a STOP command to the
IUCV line driver, and it attempted to stop the subtask
gracefully, but the wait expired before the graceful stop
completed.

System Action: The IUCV line driver continues to wait
for the subtask to stop normally.

System Programmer Response: To finish the stop at
a later time, reissue the STOP command.

BKW1607E Client count must be greater than zero.

Explanation: You issued an IUCV START command but
the client count was zero.

System Action: Nothing, except to issue this
message.

System Programmer Response: Specify a nonzero
client count.

BKW1603Il A-block &1 Client &2 done, lifetime &3
msec

Explanation: The IUCV line driver was handling a
client, and the connection to the client has ended. The
connection lasted for the displayed number of
milliseconds.

System Action: The server kernel cleans up and
prepares to handle another client.

System Programmer Response: None.

BKW1604! A-block &1 Client &2 done, inbytes &3,
inrate &4 KB/s

Explanation: The IUCV line driver was handling a
client, and the connection to the client has ended. The
server experienced the displayed input byte count and
input data rate.

System Action: Nothing.

432 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKW1608E Unable to HNDIUCV SET.

Explanation: You issued an IUCV START command but
the IUCV line driver was not able to identify the needed
HNDIUCV exit.

System Action: The subtask was not started.

System Programmer Response: You probably
inadvertently duplicated an exit name. Try another exit
name.

BKW1609E Unable to create controlling thread.

Explanation: You issued an IUCV START command but
the IUCV line driver was not able to create a CMS
thread to control the subtask.

System Action: The subtask was not started.

System Programmer Response: Contact IBM
support.

BKW1610E A-block &1 C-block &2 ThreadCreate
RC=&3 RE=&4 failed (major)

Explanation: A client connected to the server through
the IUCV line driver but the line driver was not able to
create a thread to run on behalf of the client.

System Action: The subtask is terminated.

System Programmer Response: Contact IBM
support.

BKW1611E A-block &1 C-block &2 ThreadCreate
RC=&3 RE=&4 failed (minor)

Explanation: A client connected to the server through
the IUCV line driver but the line driver was not able to
create a thread to run on behalf of the client.

System Action: The client will be served by another

thread, as soon as said other thread becomes available.

System Programmer Response: None.

BKW1612E A-block &1 C-block &2 IUCV SEND
IPRCODE &3 - severing

Explanation: The IUCV line driver encountered the
displayed IPRCODE when it attempted to send data to
a client using IUCV SEND.

System Action: The IUCV line driver severs the
connection to the client.

System Programmer Response: Research the
IPRCODE and take appropriate corrective action.

BKW1613E No userid mapping for userid &1 -
severing

Explanation: The IUCV line driver was unable to map
the client's VM user ID.

System Action: Because NOMAP_IUCV was set OFF,
the server kernel severed the connection.

System Programmer Response: Update the user ID
mapping file or set NOMAP_IUCV to ON.

Appendix H. Messages 433

APPC Line Driver Messages

BKW1700E (Resource &1) CMSIUCV CONNECT to
*IDENT RC=&2

Explanation: The APPC line driver encountered the
displayed return code when attempting to connect to
*IDENT to begin managing the displayed APPC/VM
resource.

System Action: The APPC START command failed.

System Programmer Response: Using the CP QUERY
RESOURCE command to determine whether some other
virtual machine is already managing the resource. If so,
resolve the conflict. If not, contact your system
programmer.

BKW1701E (Resource &1) Unexpected IUCV
interrupt, IPTYPE=&2

Explanation: The server kernel encountered the
displayed external interrupt type while managing an
APPC/VM conversation and was not expecting such an
external interrupt.

System Action: The conversation was severed.

System Programmer Response: Contact IBM
support.

BKW1702E Unable to identify APPC/VM resource.

Explanation: The server kernel was not able to begin
managing an APPC/VM resource.

System Action: The APPC START command failed.

System Programmer Response: This message is
issued in conjunction with some other message that
tells what kind of failure was encountered. Refer to the
other message for more information.

BKW1703E No userid mapping for LU &1, userid &2
- severing

Explanation: The attempt to pass the displayed user
ID and LU name through the user ID mapping file failed,
and NOMAP_APPC was OFF.

System Action: The conversation was severed.

System Programmer Response: Update the user ID
mapping file or set NOMAP_APPC ON.

434 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKW17041 A-block &1 Client &2 &3 started, C-block
&4

Explanation: The APPC line driver has accepted a
connection from a client.

System Action: The server kernel handles the client.

System Programmer Response: None.

BKW1705! A-block &1 Client &2 &3 done, lifetime &4
msec

Explanation: The APPC line driver was handling a
client, and the connection to the client has ended. The
connection lasted for the displayed number of
milliseconds.

System Action: The server kernel cleans up and
prepares to handle another client.

System Programmer Response: None.

BKW17061 A-block &1 Client &2 &3 done, inbytes
&4, inrate &5 KB/s

Explanation: The APPC line driver was handling a
client, and the connection to the client has ended. The
server experienced the displayed input byte count and
input data rate.

System Action: Nothing.

System Programmer Response: None.

BKW17071 A-block &1 Client &2 &3 done, outbytes
&4, outrate &5 KB/s

Explanation: The APPC line driver was handling a
client, and the connection to the client has ended. The
server experienced the displayed output byte count and
output data rate.

System Action: Nothing.

System Programmer Response: None.

Worker API Messages

BKW1800E Worker machine is already in the
specified class.

Explanation: You attempted to add a worker machine
to a given worker class, but the worker already belongs
to that class.

System Action: Nothing.

System Programmer Response: Probably nothing. If
you are attempting to increase the worker's capacity,
delete it first and then add it again.

BKW1801E Worker machine not found.

Explanation: You attempted to delete a worker
machine but it does not seem to belong to any class.

System Action: None.

System Programmer Response: Check the
command and try again.

BKW1802E Worker class not found.

Explanation: You attempted to operate on a specific
worker class, but the class doesn't seem to exist.

System Action: None.

System Programmer Response: Check the
command and try again.

BKW1803E No worker classes defined.

Explanation: You attempted to display information
about the worker machine configuration, but there are
no worker classes defined.

System Action: None.

System Programmer Response: Confirm that you did
in fact issue the WORKER ADD commands necessary to
create your worker pools.

BKW1804E No worker connections found.

Explanation: You attempted to use the STATUS
command to see information about active connections
to worker machines, but there currently are no such
connections.

System Action: None.

System Programmer Response: None.

BKW1805E No worker machines found.

Explanation: You attempted to display information
about a set of worker machines, but there are no such
worker machines defined.

System Action: None.

System Programmer Response: None.

BKW1806E P-block &1 IUCV SEND IPRCODE &3 -
severing

Explanation: The server kernel encountered the
displayed IPRCODE when attempting to use IUCV to
send information to a worker machine.

System Action: The server kernel severs the IUCV
connection and informs the instance accordingly.

System Programmer Response: Investigate the
IPRCODE and determine whether a configuration
change is appropriate.

Appendix H. Messages 435

Trie Messages

436

z/VM V3R1.0 RSK Programmer's Guide and Reference

BKW1900E No tries found.

Explanation: You asked to see a list of existing tries,
but no tries exist.

System Action: Nothing.

System Programmer Response: If you were
expecting tries, check to see whether their creation was
attempted, and if so, whether it succeeded or failed.

Appendix |I. Language Bindings

This appendix documents the language bindings used for PL/X and assembler.

Assembler Language Bindings

All of these binding macros invoke the VMASMMAX macro to ease the allocation of
storage for parameter lists. For more information on VMASMMAX, see z/VM: CMS
Application Multitasking.

Anchor Bindings (SSASMANC
MACRO

MACRO)

SSASMANC ~ &WEAK=
AGO .GASMAN1

.* Branch around prolog so it is not included in listings

*

JKRRKhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhhhhhhrhhrhhhrhdrhhhrhhrhhrhdrhrsxs

* 0% ok Xk Xk X ¥ X X X X kX

CHANGE ACTIVITY

STATUS - VM/ESA Version 2 Release 4

- New for VM/ESA Version 2 Release 4

NAME - Reusable Server Kernel anchor bindings
FUNCTION - Defines the anchor constants and dsects
COPYRIGHT -

5684-112 (C) COPYRIGHT IBM CORP.1991, 1992
LICENSED MATERIALS - PROPERTY OF IBM
SEE COPYRIGHT INSTRUCTIONS, G120-2083
ALL RIGHTS RESERVED

*

*
*
*

@VR20Z0Z
@VR20Z0Z
@VR20Z0Z
@VR20Z0z
@VR20Z0Z
@VR20Z0Z
*
@VR20Z0z
*

*

JKRAhkkkkhkkhkhkhhkhkhkhkhkhkhhhkhkhkhhhkhkhhhhkhkhhhhkhkhkhhhkhkhkhhhkhkhkhkkhkhkkhkhkkkhkkk

.* A000000-999999 New for VM/ESA Version 2 Release 4

JRhkkkkhkhhhhhhhhhhkhhhhhhhhhhhhhhhhdhdhhhhhhhhhhhhhhhdhhdhdhhhhhhhhhrdrddd

.@ASMAN1 ANOP
PUSH PRINT

AIF ('&SYSPARM' NE 'SUP').ASMAN2
PRINT OFF,NOGEN

.ASMANZ ANOP

LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'

AIF ('&WEAK' NE 'YES').ASMAN3

@VR74PVM

&SXXTRN SETC 'WXTRN'

.ASMAN3 ANOP

B *

* Return and reason codes for anchor functions *

K o = - —— *
SPACE 1

* return codes
SS_ANC_RC_SUCCESS
SS_ANC_RC_WARNING
SS_ANC_RC_ERROR
SS_ANC_RC_ABEND

© Copyright IBM Corp. 1999, 2001

EQU
EQU
EQU
EQU

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000

437

*
* reason codes

SS_ANC_RE_SUCCESS EQU
K o - —————————————————————————————————
* Constants for anchor functions
K o o - - - - -
SPACE 1
K o o e
* Definitions for anchor functions
K o o o m m m m m — — — — — — — — — — ——————————
SPACE 1
K o o = —————
* Declaration for ssAnchorSet
K - —————————————————————————————
SPACE 1
&$XXTRN BKWAST
SSANCHORSET EQU
SPACE 1
BKWAST _PLIST DSECT
BKWAST _PLIST RC DS
BKWAST_PLIST_RE DS
BKWAST _PLIST AV DS
BKWAST_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
K - ——————————————————————————
* Declaration for ssAnchorGet
K o ———————————————————————
SPACE 1
&$XXTRN BKWAGT
SSANCHORGET EQU
SPACE 1
BKWAGT_PLIST DSECT
BKWAGT _PLIST RC DS
BKWAGT_PLIST RE DS
BKWAGT _PLIST AV DS
BKWAGT _PLIST MB DS
BKWAGT PLIST MBL DS
BKWAGT _PLIST LENGTH EQU
VMASMMAX
K o o o m m m m m m — — — — — — — — ————————————
* End of declarations
K o —————————————————
EJECT
POP PRINT
MEND

Authorization Bindings (SSASMAUT MACRO)

438 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKWAST

A * return code
A * reason code
A * anchor value
*-BKWAST_PLIST

BKWAGT

return code
reason code
anchor value
monitor buffer
* monitor buffer length
-BKWAGT_PLIST

* % * X

* > = > > >

00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000

MACRO
SSASMAUT &WEAK=
AGO .GASMAU1

.* Branch around prolog so it is not included in listings *
JKhhhkkkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhdhddhhhrrrhhdddss
o x *
.* NAME - Reusable Server Kernel authorization bindings *
o* *
.* FUNCTION - Defines the authorization constants and dsects *
o F *
.* COPYRIGHT - @VR20Z0Z
- * @VR20Z0Z
3 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20z0Z
S LICENSED MATERIALS - PROPERTY OF IBM @VR20z0Z
S SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20z0Z
S ALL RIGHTS RESERVED @VR20Z0Z
 * *
.* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z
o *
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 *
SRRk hhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhkhhhhhhhhhhhhhhhhkkkhrsxx
.* AOOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR74PVM

JKRhkkkhkhkkhhhhhkhhhhkhkhhhhkhkhhhhhkhhhhhkhhhhhhhhhhkhkhkhhhkhkkhhkkhkhkkhkhkkkhkkkx

.@ASMAUL ANOP
PUSH PRINT
AIF ('&SYSPARM' NE 'SUP').ASMAU2
PRINT OFF,NOGEN
.ASMAUZ ANOP
LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'
AIF ('&WEAK' NE 'YES').ASMAU3
&$XXTRN SETC 'WXTRN'
.ASMAU3 ANOP

T *

* Return and reason codes for authorization functions *

i *
SPACE 1

*

* return codes

SS_AUT_RC_SUCCESS EQU 0

SS_AUT_RC_WARNING EQU 4

SS_AUT_RC_ERROR EQU 8

SS_AUT_RC_ABEND EQU 12

*

* reason codes

SS_AUT_RE_SUCCESS EQU 0

SS_AUT_RE_BAD_COUNT EQU 301

SS_AUT_RE_BAD_USER_LENGTH EQU 302

SS_AUT_RE_BAD_OBJ_LENGTH EQU 303

SS_AUT_RE_BAD OPTION EQU 304

SS_AUT_RE_BAD QUAL EQU 305

SS_AUT_RE_BAD_USE EQU 306

SS_AUT_RE_EXISTS EQU 307

SS_AUT_RE_NO_CLASS EQU 308

SS_AUT_RE_NO OBJECT EQU 309

SS_AUT_RE_MAQ FAIL EQU 310

SS_AUT_RE_CVW_FAIL EQU 311

SS_AUT_RE_CVS_FAIL EQU 312

Appendix I. Language Bindings

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000

439

SS_AUT_RE_MR_FAIL EQU 313
SS_AUT_RE_TOO_MANY EQU 314
SS_AUT_RE_OUT_OF STORAGE EQU 315
SS_AUT_RE_NO_USER EQU 316
SS_AUT_RE_PREV_IO ERROR EQU 317
SS_AUT_RE_PREV_SYNC_ERROR EQU 318
SS_AUT_RE_READ_FAIL EQU 319
SS_AUT_RE_WRITE_FAIL EQU 320
SS_AUT_RE_TRUNC EQU 321
SS_AUT_RE_GWU_FAIL EQU 322
SS_AUT_RE_OPEN_FAIL EQU 323
SS_AUT_RE_BAD_CACHE EQU 324
SS_AUT_RE_BAD_FREE EQU 325
SS_AUT_RE_BAD 0P EQU 326
*
g g g g g g
* Constants for authorization functions
g g g g g g
SPACE 1
B e L T T L TR *
* Return values from ssAuthTestOperations =*
* and ssAuthPermitUser *
K o - *
SS_AUT_OP_PERMITTED EQU 0
SS_AUT_OP_NOT_PERMITTED EQU 1
SS_AUT_OP_NOT_DEFINED EQU 2
SS_AUT_OP_NO_CHANGE EQU 3
*
B T *
* Qualifiers for ssAuthPermitUser *
e e e e e e *
SS_AUT_ADD_OPERATION EQU 0
SS_AUT_REMOVE_OPERATION EQU 1
*
K o - *
* Use arrays in ssAuthPermitUser *
e e e e e e e e e e ————————————— *
SS_AUT_USE_ARRAYS EQU 0
SS_AUT DELETE_ALL EQU 1
SS_AUT_ADD_ALL EQU 2
*
K e e e e e e e e e ——————— e ———— *
* Qualifiers for ssAuthDeleteObject *
B e LT T L T T e, *
SS_AUT_RULES_ONLY EQU 0
SS_AUT_RULES_AND_OBJECT EQU 1
*
B *
* Qualifiers for ssAuthDeleteUser *
K *
SS_AUT_SPECIFIC_CLASS EQU 0
SS_AUT_ALL_CLASSES EQU 1
*
K e e e e e e e e e ——————— e ———— *
* Qualifiers for ssAuthDeleteClass *
B e L T T T L T T . *
SS_AUT_OBJECTS_ONLY EQU 0
SS_AUT_OBJECTS_AND_CLASS EQU 1

440 z/vM V3R1.0 RSK Programmer's Guide and Reference

00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000

* Definitions for authorization functions

K - ———
SPACE 1

K o o S S S - -

* Operations on classes

L ———

*

* create class

SPACE 1

&$XXTRN BKWUCC
SSAUTHCREATECLASS

SPACE 1
BKWUCC_PLIST
BKWUCC_PLIST RC
BKWUCC_PLIST RE
BKWUCC_PLIST CID
BKWUCC_PLIST 0C
BKWUCC_PLIST OA
BKWUCC_PLIST LENGTH

SPACE 1
* modify class
*

SPACE 1

&$XXTRN BKWUMC
SSAUTHMODIFYCLASS

SPACE 1
BKWUMC_PLIST
BKWUMC_PLIST RC
BKWUMC_PLIST RE
BKWUMC_PLIST CID
BKWUMC_PLIST 0C
BKWUMC_PLIST OA
BKWUMC_PLIST LENGTH

SPACE 1
* list classes

SPACE 1

&$XXTRN BKWULC
SSAUTHLISTCLASSES

SPACE 1
BKWULC_PLIST
BKWULC_PLIST RC
BKWULC_PLIST RE
BKWULC_PLIST MK
BKWULC_PLIST_MKL
BKWULC_PLIST NE
BKWULC_PLIST OB
BKWULC_PLIST NR
BKWULC_PLIST LENGTH

EQU

DSECT

DS

DS

DS

DS

DS

EQU
VMASMMAX

EQU

DSECT

DS

DS

DS

DS

DS

EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

EQU
VMASMMAX

BKWUCC

return code
reason code
class identifier
operation count
* operation array
-BKWUCC_PLIST

* % ok X

* > > > > >

BKWUMC

return code
reason code
class identifier
operation count
* operation array
-BKWUMC_PLIST

* > > > > >
b T

BKWULC

return code
reason code
match key
match key length
number expected
output buffer

* number returned
-BKWULC_PLIST

* % X X * X

¥ > > > > > > >

Appendix I. Language Bindings

00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000

441

SPACE 1 00174000

* 00175000
* delete class 00176000
* 00177000
SPACE 1 00178000

&$XXTRN BKWUDC 00179000
SSAUTHDELETECLASS EQU BKWUDC 00180000
SPACE 1 00181000
BKWUDC_PLIST DSECT 00182000
BKWUDC_PLIST_RC DS A % return code 00183000
BKWUDC_PLIST_RE DS A = reason code 00184000
BKWUDC_PLIST_CID DS A * class identifier 00185000
BKWUDC_PLIST_OC DS A % option count 00186000
BKWUDC_PLIST_OA DS A+ option array 00187000
BKWUDC_PLIST_LENGTH EQU *-BKWUDC_PLIST 00188000
VMASMMAX 00189000

e e e e e e e * 00190000
* Operations on objects * 00191000
K e * 00192000
* 00193000
* create object 00194000
* 00195000
SPACE 1 00196000

&$XXTRN BKWUCO 00197000
SSAUTHCREATEOBJECT EQU BKWUCO 00198000
SPACE 1 00199000
BKWUCO_PLIST DSECT 00200000
BKWUCO_PLIST_RC DS A = return code 00201000
BKWUCO_PLIST_RE DS A % reason code 00202000
BKWUCO_PLIST_ON DS A % object name 00203000
BKWUCO_PLIST ONL DS A * object name length 00204000
BKWUCO_PLIST_CID DS A % object class 00205000
BKWUCO_PLIST_LENGTH EQU *-BKWUCO_PLIST 00206000
VMASMMAX 00207000

SPACE 1 00208000

* 00209000
* Tist objects in class 00210000
* 00211000
SPACE 1 00212000

&$XXTRN BKWULO 00213000
SSAUTHLISTOBJECTS EQU BKWULO 00214000
SPACE 1 00215000
BKWULO_PLIST DSECT 00216000
BKWULO_PLIST_RC DS A * return code 00217000
BKWULO_PLIST_RE DS A reason code 00218000
BKWULO_PLIST_CID DS A * class identifier 00219000
BKWULO_PLIST_MK DS A = match key 00220000
BKWULO_PLIST_MKL DS A * match key length 00221000
BKWULO_PLIST_NE DS A % number expected 00222000
BKWULO_PLIST_BP DS A * buffer pointers 00223000
BKWULO_PLIST_BS DS A * buffer sizes 00224000
BKWULO_PLIST_RL DS A = returned Tengths 00225000
BKWULO_PLIST_NR DS A % number returned 00226000
BKWULO_PLIST_LENGTH EQU *-BKWULO_PLIST 00227000
VMASMMAX 00228000

SPACE 1 00229000

* 00230000

442 z/vM V3R1.0 RSK Programmer's Guide and Reference

* query an object
*

SPACE 1

&$XXTRN BKWUQO
SSAUTHQUERYOBJECT EQU BKWUQO

SPACE 1
BKWUQO_PLIST DSECT
BKWUQO_PLIST_RC DS A % return code
BKWUQO_PLIST_RE DS A reason code
BKWUQO_PLIST_ON DS A % object name
BKWUQO_PLIST_ONL DS A = object name length
BKWUQO_PLIST_CID DS A % class identifier
BKWUQO_PLIST_UX DS A % userids expected
BKWUQO_PLIST UBP DS A * userid buf pointers
BKWUQO_PLIST_UBS DS A % userid buf sizes
BKWUQO_PLIST_UL DS A userid lengths
BKWUQO_PLIST_UR DS A % userids returned
BKWUQO_PLIST_LENGTH EQU *-BKWUQO_PLIST

VMASMMAX

SPACE 1
* delete an object
*

SPACE 1

&$XXTRN BKWUDO
SSAUTHDELETEOBJECT EQU BKWUDO

SPACE 1
BKWUDO_PLIST DSECT
BKWUDO_PLIST_RC DS A % return code
BKWUDO_PLIST_RE DS A % reason code
BKWUDO_PLIST ON DS A * object name
BKWUDO_PLIST_ONL DS A % its Tength
BKWUDO_PLIST_OC DS A * option count
BKWUDO_PLIST_OA DS A = option array
BKWUDO_PLIST_LENGTH EQU *-BKWUDO_PLIST

VMASMMAX

SPACE 1
e e e e e e e e e —————————— *
* Operations on users *
K e e e e e e e e e e - *
*
* permit user
*

SPACE 1

&$XXTRN BKWUPU
SSAUTHPERMITUSER EQU BKWUPU

SPACE 1
BKWUPU_PLIST DSECT
BKWUPU_PLIST_RC DS A % return code
BKWUPU_PLIST RE DS A * reason code
BKWUPU_PLIST_UN DS A user name
BKWUPU_PLIST_UNL DS A * its length
BKWUPU_PLIST_ON DS A % object name
BKWUPU_PLIST_ONL DS A * its Tength
BKWUPU_PLIST UA DS A+ use arrays?
BKWUPU_PLIST_OC DS A operation count
BKWUPU_PLIST_OA DS A * operation array
BKWUPU_PLIST_0Q DS A * operation qualifiers

Appendix I. Language Bindings

00231000
00232000
00233000
00234000
00235000
00236000
00237000
00238000
00239000
00240000
00241000
00242000
00243000
00244000
00245000
00246000
00247000
00248000
00249000
00250000
00251000
00252000
00253000
00254000
00255000
00256000
00257000
00258000
00259000
00260000
00261000
00262000
00263000
00264000
00265000
00266000
00267000
00268000
00269000
00270000
00271000
00272000
00273000
00274000
00275000
00276000
00277000
00278000
00279000
00280000
00281000
00282000
00283000
00284000
00285000
00286000
00287000
00288000

443

444

BKWUPU_PLIST_OR
BKWUPU_PLIST_LENGTH

SPACE 1
* query specific rule
*

&$XXTRN BKWUQR
SSAUTHQUERYRULE

SPACE 1

BKWUQR_PLIST
BKWUQR_PLIST RC
BKWUQR_PLIST RE
BKWUQR_PLIST UN
BKWUQR_PLIST UNL
BKWUQR_PLIST ON
BKWUQR_PLIST ONL
BKWUQR_PLIST OF
BKWUQR_PLIST OA
BKWUQR_PLIST OR
BKWUQR_PLIST LENGTH

SPACE 1
* test operations
*

SPACE 1

&$XXTRN BKWUTO
SSAUTHTESTOPERATIONS

SPACE 1
BKWUTO_PLIST
BKWUTO_PLIST RC
BKWUTO_PLIST RE
BKWUTO_PLIST UN
BKWUTO_PLIST UNL
BKWUTO_PLIST ON
BKWUTO_PLIST ONL
BKWUTO_PLIST 0OC
BKWUTO_PLIST OA
BKWUTO_PLIST TR
BKWUTO_PLIST LENGTH

SPACE 1
delete user

SPACE 1

&$XXTRN BKWUDU
SSAUTHDELETEUSER

SPACE 1
BKWUDU_PLIST
BKWUDU_PLIST RC
BKWUDU_PLIST RE
BKWUDU_PLIST UN
BKWUDU_PLIST UNL
BKWUDU_PLIST CID
BKWUDU_PLIST 0C

z/VM V3R1.0 RSK Programmer's Guide and Reference

DS
EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

DS

DS
EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

DS

DS
EQU
VMASMMAX

EQU

DSECT
DS
DS
DS
DS
DS
DS

A = operation results
*-BKWUPU_PLIST

BKWUQR

return code

reason code

user name

its length

object name

its length

ops expected

operation array
* ops returned

-BKWUQR_PLIST

£ % ok X %X X X %

* > > > > > > >

BKWUTO

return code

reason code

user name

its length

object name

its length

operation count

operation array
* test results

-BKWUTO_PLIST

* 0% ok X %k X 3k X

BKWUDU

return code
reason code

user name

its length

class identifier
option count

> > > > >

* X % F X %

00289000
00290000
00291000
00292000
00293000
00294000
00295000
00296000
00297000
00298000
00299000
00300000
00301000
00302000
00303000
00304000
00305000
00306000
00307000
00308000
00309000
00310000
00311000
00312000
00313000
00314000
00315000
00316000
00317000
00318000
00319000
00320000
00321000
00322000
00323000
00324000
00325000
00326000
00327000
00328000
00329000
00330000
00331000
00332000
00333000
00334000
00335000
00336000
00337000
00338000
00339000
00340000
00341000
00342000
00343000
00344000
00345000

BKWUDU_PLIST_OA DS A = option array
BKWUDU_PLIST LENGTH EQU *-BKWUDU_PLIST
VMASMMAX

SPACE 1
L e e T T *
* UtiTity functions *
K *
*
* try to reset access to data files
*

SPACE 1

&$SXXTRN BKWURL
SSAUTHRELOAD EQU BKWURL

SPACE 1
BKWURL_PLIST DSECT
BKWURL_PLIST_RC DS A = return code
BKWURL_PLIST_RE DS A % reason code
BKWURL_PLIST LENGTH EQU *-BKWURL_PLIST

VMASMMAX

SPACE 1
K o *
* End of declarations *
K o - *

EJECT

POP PRINT

MEND

Cache Bindings (SSASMCAC MACRO)

MACRO
SSASMCAC &WEAK=

AGO .@ASMOB1
.* Branch around prolog so it is not included in listings *
JKhhhkkhhhdhddhhhrrrhhdhddds
o x *
.* NAME - Reusable Server Kernel cache bindings *
o F *
.* FUNCTION - Defines the file cache constants and dsects *
o* *
.* COPYRIGHT - @VR20Z0Z
- * @VR20Z0Z
S 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z
S LICENSED MATERIALS - PROPERTY OF IBM @VR20z0Z
S SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20z0zZ
Sk ALL RIGHTS RESERVED @VR20Z0Z
o* *
.* STATUS - Version 2 Release 4 @VR20Z0Z
o *
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 *
JKhhkkhkkhhhhhhhhhhhhhhhhkhhhhhhkhhhhhhhhhhhhhhhhhhkhhhhhhkhhhhhhkhhhhkkkhrsx
.* AOOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR74PVM

Lk ko ek ek ko ok ok ko ko ek ok e ok ok ok ko ko ko ok ok ek ok ek ke ko ko ko ko
.@GASMOB1 ANOP

PUSH PRINT

AIF ('&SYSPARM' NE 'SUP').ASMOB2

PRINT OFF,NOGEN
.ASMOB2 ANOP

Appendix I. Language Bindings

00346000
00347000
00348000
00349000
00350000
00351000
00352000
00353000
00354000
00355000
00356000
00357000
00358000
00359000
00360000
00361000
00362000
00363000
00364000
00365000
00366000
00367000
00368000
00369000
00370000
00371000

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000

445

446

LCLC &$XXTRN
&$XXTRN SETC "EXTRN'

AIF ('&WEAK' NE 'YES').ASMOB3

&$XXTRN SETC 'WXTRN'
.ASMOB3 ANOP

SPACE 1
* return codes

SS_CAC_RC_SUCCESS EQU
SS_CAC_RC_WARNING EQU
SS_CAC_RC_ERROR EQU
SS_CAC_RC_ABEND EQU
*
* reason codes
SS_CAC_RE_SUCCESS EQU
SS_CAC_RE_OUT_OF STORAGE EQU
SS_CAC_RE_TABLE_REPLACED EQU
SS_CAC_RE_CACHE_NOT_FOUND EQU
SS_CAC_RE_DSCR_FAIL EQU
SS_CAC_RE_CACHE_EXISTS EQU
SS_CAC_RE_BAD_SIZE EQU
SS_CAC_RE_BAD_TOKEN EQU
SS_CAC_RE_BAD_LENGTH EQU
SS_CAC_RE_BAD_COUNT EQU
SS_CAC_RE_BAD_ ESMDL EQU
SS_CAC_RE_BAD_FNAME EQU
SS_CAC_RE_BAD_FVAL EQU
SS_CAC_RE_EXIST FAIL EQU
SS_CAC_RE_FILE NOT_FOUND EQU
SS_CAC_RE_DELETE_IN_ PROGRESS EQU
SS_CAC_RE_BAD_OFFSET EQU
SS_CAC_RE_BAD TABLE_ID EQU
SS_CAC_RE_TABLE_NOT_FOUND EQU
SS_CAC_RE_OPEN_FAIL EQU
SS_CAC_RE_BAD RECFM EQU
SS_CAC_RE_BAD LRECL EQU
SS_CAC_RE_OUT_OF _STORAGE_DS EQU
SS_CAC_RE_READ_FAIL EQU
SS_CAC_RE_BAD DATA_STREAM EQU
SPACE 1
* Constants for file functions
SPACE 1
* open flag names
SS_CAC_OFN_XLATE EQU
SS_CAC_OFN_PRESERVE_DOLR EQU
SS_CAC_OFN_BFS EQU
SS_CAC_OFN_RECMETHOD_FS EQU
SS_CAC_OFN_RECMETHOD_CACHE EQU
*
* open flag values
SS_CAC_OFV_NO EQU
SS_CAC_OFV_YES EQU

SPACE 1

z/VM V3R1.0 RSK Programmer's Guide and Reference

PN O

<]

00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000

*

Definitions for file functions

e e e e e] *
SPACE 1
* create cache
*
SPACE 1
&$XXTRN BKWOCC
SSCACHECREATE EQU BKWOCC
SPACE 1
BKWOCC_PLIST DSECT
BKWOCC_PLIST_RC DS A % return code
BKWOCC_PLIST_RE DS A % reason code
BKWOCC_PLIST CNAME DS A * cache name
BKWOCC_PLIST_PAGES DS A * file name length
BKWOCC_PLIST_ALET DS A = storage group num
BKWOCC_PLIST_LENGTH EQU *-BKWOCC_PLIST
VMASMMAX
SPACE 1
*
* delete cache
SPACE 1
&$XXTRN BKWOCD
SSCACHEDELETE EQU BKWOCD
SPACE 1
BKWOCD_PLIST DSECT
BKWOCD_PLIST_RC DS A = return code
BKWOCD_PLIST_RE DS A % reason code
BKWOCD_PLIST_CNAME DS A % cache name
BKWOCD_PLIST_LENGTH EQU *-BKWOCD_PLIST
VMASMMAX
SPACE 1
query cache utilization
SPACE 1
&$XXTRN BKWOCQ
SSCACHEQUERY EQU BKWOCQ
SPACE 1
BKWOCQ_PLIST DSECT
BKWOCQ_PLIST_RC DS A % return code
BKWOCQ PLIST RE DS A * reason code
BKWOCQ_PLIST_CNAME DS A % cache name
BKWOCQ_PLIST_FCOUNT DS A« files cached
BKWOCQ_PLIST_CSIZE DS A % cache size
BKWOCQ_PLIST_INUSE DS A = amt in use
BKWOCQ_PLIST_OCOUNT DS A+ open count
BKWOCQ_PLIST_HCOUNT DS A * hit count
BKWOCQ_PLIST_LENGTH EQU *-BKWOCQ_PLIST
VMASMMAX
SPACE 1
* set translation table
SPACE 1
&$XXTRN BKWOTS
SSCACHEXLTABSET EQU BKWOTS

Appendix I. Language Bindings

00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000

447

448

SPACE 1
BKWOTS_PLIST
BKWOTS_PLIST RC
BKWOTS_PLIST RE
BKWOTS_PLIST XLTABID
BKWOTS_PLIST XLTAB
BKWOTS_PLIST LENGTH

SPACE 1
* open a cached file

SPACE 1

&$XXTRN BKWOFO
SSCACHEFILEOPEN

SPACE 1
BKWOFO_PLIST
BKWOFO_PLIST RC
BKWOFO_PLIST RE
BKWOFO_PLIST CNAME
BKWOFO_PLIST FSPEC
BKWOFO_PLIST FSPECLEN
BKWOFO_PLIST ESMD
BKWOFO_PLIST ESMDLEN
BKWOFO_PLIST FCOUNT
BKWOFO_PLIST FNAMES
BKWOFO_PLIST FVALS
BKWOFO_PLIST FTOKEN
BKWOFO_PLIST ALET
BKWOFO_PLIST DSADDR
BKWOFO_PLIST DSLEN
BKWOFO_PLIST LASTUPD
BKWOFO_PLIST_LENGTH

SPACE 1
* read cached file
*

SPACE 1

&$XXTRN BKWOFR
SSCACHEFILEREAD

SPACE 1
BKWOFR_PLIST
BKWOFR_PLIST RC
BKWOFR_PLIST RE
BKWOFR_PLIST CNAME
BKWOFR_PLIST_FTOKEN
BKWOFR_PLIST OFFSET
BKWOFR_PLIST COUNT
BKWOFR_PLIST BUFFER
BKWOFR_PLIST RETURNED
BKWOFR_PLIST LENGTH

SPACE 1
* close cached file
*

SPACE 1

z/VM V3R1.0 RSK Programmer's Guide and Reference

DSECT

DS

DS

DS

DS

EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS
EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

DS
EQU
VMASMMAX

* return code
* reason code
* xTtab id
* x1tab
-BKWOTS_PLIST

BKWOFOQ

return code

reason code

cache name

file spec

its length

ESM data

its length

flag count

flag names

flag values

file token

file ALET

file DS address

file DS length
* last update date

-BKWOFO_PLIST

£ 0% 3k X %k X X X X %k X %X X X

¥ > > > > X >>

BKWOFR

return code
reason code
cache name
file token
byte offset
byte count

out buffer

* bytes returned

-BKWOFR_PLIST

£ % %k X % X X

00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000
00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000
00199000
00200000
00201000
00202000

&$XXTRN BKWOFC

SSCACHEFILECLOSE EQU
SPACE 1
BKWOFC_PLIST DSECT
BKWOFC_PLIST_RC DS
BKWOFC_PLIST_RE DS
BKWOFC_PLIST CNAME DS
BKWOFC_PLIST_FTOKEN DS
BKWOFC_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
K o o = —————
* End of definitions
K - —————————————————————————————
EJECT
POP PRINT
MEND

Client Bindings (SSASMCLI MACRO)
MACRO

BKWOFC

return code
reason code
cache name

file token

-BKWOFC_PLIST

* X %

*

* > > > >

SSASMCLI &WEAK=

AGO .@ASMSR1
.* Branch around prolog so it is not included in listings *
JRhkhkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhhhhhhhhhhhhhhhhdhdhhhhhhhhhhhdrdxdd
oK *
.* NAME - Reusable Server Kernel services bindings *
KX *
.* FUNCTION - LANGUAGE BINDINGS FOR THE CLIENT SERVICES *
W x *
.* COPYRIGHT - @VR2020Z
o* @VR20Z0Z
S* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z
S* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z
Sk SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z
S* ALL RIGHTS RESERVED @VR2020Z
W x *
.* STATUS - Version 2 Release 4 @VR20Z0Z
KX *
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 *
JKhhkhkkkhhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhdhddhhhrrrhhhdddxx
.* AD0OO00-999999 New for VM/ESA Version 2 Release 4 GVR24PVM
JKhRkhkkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhrhhhrhhhhhhrhhhrhkhhrhhrhkhhrhhrhrsxs
.@ASMSR1 ANOP

PUSH PRINT

AIF ('&SYSPARM' NE 'SUP').ASMSR2

PRINT OFF,NOGEN
.ASMSR2 ANOP

LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'

AIF ('&WEAK' NE 'YES').ASMSR3
&$XXTRN SETC 'WXTRN'
.ASMSR3 ANOP
K o e e *
* Return and reason codes for services functions *

SPACE 1

Appendix I. Language Bindings

00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000

449

450

* return codes

SS_CLI RC_SUCCESS EQU
SS_CLI_RC_WARNING EQU
SS_CLI_RC_ERROR EQU
SS_CLI_RC_ABEND EQU
*
* reason codes
SS_CLI_RE_SUCCESS EQU
SS_CLI_RE_OUT_OF_RANGE EQU
SS_CLI_RE_OUT_OF STORAGE EQU
SS_CLI_RE_BAD_IAM EQU
SS _CLI_RE_BAD _METHOD EQU
SS_CLI_RE_SEMC FAIL EQU
*
* Who i am
SPACE 1
SS_CLI IAM_INSTANCE EQU
SS_CLI_IAM_LINEDRIVER EQU
*
* Ways to get data
SPACE 1
SS_CLI_METHOD_READ EQU
SS_CLI_METHOD_PEEK EQU
SS_CLI METHOD DISCARD EQU
* Definitions for services function
SPACE 1
* initialize client data queues
SPACE 1
&$XXTRN BKWIIN
SSCLIENTDATAINIT EQU
SPACE 1
BKWIIN PLIST DSECT
BKWIIN_ PLIST RC DS
BKWIIN PLIST RE DS
BKWIIN_PLIST CB DS
BKWIIN_PLIST_SUBPOOL DS
BKWIIN PLIST LENGTH EQU
VMASMMAX
SPACE 1
*
* terminate client data queues
*
SPACE 1
&$XXTRN BKWITM
SSCLIENTDATATERM EQU
SPACE 1
BKWITM_PLIST DSECT
BKWITM_PLIST_RC DS
BKWITM_PLIST RE DS
BKWITM_PLIST CB DS
BKWITM PLIST LENGTH EQU
VMASMMAX

SPACE 1

z/VM V3R1.0 RSK Programmer's Guide and Reference

= 00 &~ o

901
902
903
904
905

N = o

BKWIIN

* return code
* reason code
* C-block addr
* subpool name

-BKWIIN_PLIST

BKWITM

A * return code
A * reason code
A * C-block addr
*-BKWITM_PLIST

00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000

* get input from client C-block
*

SPACE 1

&$XXTRN BKWIDG
SSCLIENTDATAGET EQU

SPACE 1
BKWIDG_PLIST DSECT
BKWIDG_PLIST_RC DS
BKWIDG_PLIST_RE DS
BKWIDG_PLIST_INS DS
BKWIDG_PLIST_CB DS
BKWIDG_PLIST GM DS
BKWIDG_PLIST_ALET DS
BKWIDG_PLIST BUF DS
BKWIDG_PLIST_AM DS
BKWIDG_PLIST_AG DS
BKWIDG_PLIST AL DS
BKWIDG_PLIST_LENGTH EQU

VMASMMAX

SPACE 1

*
* put output
*

onto client C-block

BKWIDG

return code
reason code
instance or 1d?
C-block addr
get method
ALET
buffer
amt wanted
amt given

* amt left
-BKWIDG_PLIST

% % X X X X 3k X

* > > > > > > > > >

SPACE 1

&$XXTRN BKWIDP
SSCLIENTDATAPUT EQU BKWIDP

SPACE 1
BKWIDP_PLIST DSECT
BKWIDP_PLIST_RC DS A % return code
BKWIDP_PLIST_RE DS A % reason code
BKWIDP_PLIST_INS DS A * instance or 1d?
BKWIDP_PLIST CB DS A % C-block addr
BKWIDP_PLIST_ALET DS A = ALET
BKWIDP_PLIST_ BUF DS A * buffer
BKWIDP_PLIST_AP DS A = amt to put
BKWIDP_PLIST_NA DS A % new amount
BKWIDP_PLIST_ LENGTH EQU *-BKWIDP_PLIST

VMASMMAX

SPACE 1
K e e e e e e e e e e - *
* End of declarations *
A e e e e e e e ——————————— *

EJECT

POP PRINT

MEND

MACRO

Enroliment Bindings (SSASMENR MACRO)

SSASMENR &WEAK=
AGO .GASMSR1

.* Branch around prolog so it is not included in listings *
JKhhkhkkkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhdhddhhhrrrhhhdddxs

NAME -

* ¥ %

*

FUNCTION -

*

Reusable Server Kernel

Language bindings for enrollment services

services bindings

* X ok X

*

Appendix I. Language Bindings

00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000

451

.* COPYRIGHT - @VR20Z0Z
oK @VR20Z0Z
Sk 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z
Sk LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z
Sk SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z
K ALL RIGHTS RESERVED @VR20Z0Z
oK *
.* STATUS - Version 2 Release 4 @VR20Z0Z
oK *
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 *
JKhkkkhkkhhhhhkhhhhhkhhhhkhkhhhhhkhhhhhhhkhhhkhkhhhhkhkhhhhkhkhhhkkhkhkkhkhkkkhkkkx
.* ADOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR24PVM
JRhkkkkhkhkhhhhhhhhhhkhhhhhhhhhhhhhhhdhdhdhhhhhhhhhhhhhhhhhddhhhhhhhhhrdrddd
.GASMSR1 ANOP
PUSH PRINT
AIF ('&SYSPARM' NE 'SUP').ASMSR2
PRINT OFF,NOGEN
.ASMSR2 ANOP
LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'
AIF ('&WEAK' NE 'YES').ASMSR3
&$XXTRN SETC 'WXTRN'
.ASMSR3 ANOP
i *
* Return and reason codes for services functions *
K *
SPACE 1
*
* return codes
SS_ENR_RC_SUCCESS EQU 0
SS_ENR_RC_WARNING EQU 4
SS_ENR_RC_ERROR EQU 8
SS_ENR_RC_ABEND EQU 12
*
* reason codes
SS_ENR_RE_SUCCESS EQU 0
SS_ENR_RE_DB_NOT_FOUND EQU 1001
SS_ENR_RE_REC_NOT_FOUND EQU 1002
SS_ENR_RE_TRUNCATED EQU 1003
SS_ENR_RE_DIRTY EQU 1004
SS_ENR_RE_REC_EXISTS EQU 1005
SS_ENR_RE_BAD_LENGTH EQU 1006
SS_ENR_RE_BAD DROPTYPE EQU 1007
SS_ENR_RE_NO_STORAGE EQU 1008
SS_ENR_RE_CLOSE_FAIL EQU 1009
SS_ENR_RE_WRITE_FAIL EQU 1010
SS_ENR_RE_BAD_METHOD EQU 1011
SS_ENR_RE_OPEN_FAIL EQU 1012
SS_ENR_RE_GWU_FAIL EQU 1013
SS_ENR_RE_POINT_FAIL EQU 1014
SS_ENR_RE_EXIST_FAIL EQU 1015
SS_ENR_RE_NOT_SFS EQU 1016
SS_ENR_RE_NOT_V EQU 1017
SS_ENR_RE_DSCR_FAIL EQU 1018
SS_ENR_RE_READ_FAIL EQU 1019
SS_ENR_RE_DB_EXISTS EQU 1020
SS_ENR_RE_COMM_FAIL EQU 1021
SS_ENR_RE_NOT_DISK EQU 1022

z/VM V3R1.0 RSK Programmer's Guide and Reference

00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000

SS_ENR_RE_BAD_KIND EQU 1023

SS_ENR_RE_NEW FILE EQU 1024
SS_ENR_RE_NO_SETS EQU 1025
SS_ENR_RE_SET_EMPTY EQU 1026
SPACE 1
*
* API maxima
SS_ENR_INDEX WIDTH EQU 64
SS_ENR_MAX_DATA EQU 65450
SPACE 1
*
* KIND types
SS_ENR_KIND_MEMORY EQU 0
SS_ENR_KIND DISK EQU 1
SPACE 1
*
* INSERT types
SS_ENR_INSERT_NEW EQU 0
SS_ENR_INSERT REPLACE EQU 1
SPACE 1
*
* DROP types
SS_ENR_DROP_COMMIT EQU 0
SS_ENR_DROP_ROLLBACK EQU 1
SPACE 1
K o o o - -
* Definitions for enrollment services
g g g g g g
SPACE 1
*
* load enrollment data base
*
SPACE 1
&$XXTRN BKWJLO
SSENROLLLOAD EQU BKWJLO
SPACE 1
BKWJLO_PLIST DSECT
BKWJLO PLIST RC DS A * return code
BKWJLO_PLIST_RE DS A % reason code
BKWJLO_PLIST_DBASE DS A = dbase name
BKWJLO _PLIST DS KIND DS A« DS kind
BKWJLO_PLIST DS SIZE DS A+ DS size
BKWJLO PLIST_FN DS A * filename
BKWJLO_PLIST_FNL DS A+ filename length
BKWJLO_PLIST_LENGTH EQU *-BKWJLO_PLIST
VMASMMAX
SPACE 1
* drop enrollment data base
*
SPACE 1
&$XXTRN BKWJDP
SSENROLLDROP EQU BKWJDP
SPACE 1
BKWJDP_PLIST DSECT
BKWJDP_PLIST_RC DS A % return code
BKWJDP_PLIST_RE DS A reason code
BKWJDP_PLIST DBASE DS A * dbase name

Appendix I. Language Bindings

00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000

453

454

BKWJDP_PLIST DT DS
BKWJDP_PLIST LENGTH EQU
VMASMMAX
SPACE 1
* commit enrollment data base
SPACE 1
&$XXTRN BKWJICM
SSENROLLCOMMIT EQU
SPACE 1
BKWJCM_PLIST DSECT
BKWJCM_PLIST RC DS
BKWJCM _PLIST RE DS
BKWJCM_PLIST DBASE DS
BKWJCM_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
* list data bases
*
SPACE 1
&$XXTRN BKWJIDL
SSENROLLLIST EQU
SPACE 1
BKWJDL_PLIST DSECT
BKWJDL PLIST RC DS
BKWJDL_PLIST_RE DS
BKWJDL PLIST CB DS
BKWJDL_PLIST LENGTH EQU
VMASMMAX
SPACE 1
* insert record
SPACE 1
&$XXTRN BKWJIRI
SSENROLLRECORDINSERT EQU
SPACE 1
BKWJRI_PLIST DSECT
BKWJRI_PLIST RC DS
BKWJRI_PLIST RE DS
BKWJRI PLIST DBASE DS
BKWJRI_PLIST INDEX DS
BKWJRI_PLIST_DATA DS
BKWJRI_PLIST DATAL DS
BKWJRI_PLIST REP DS
BKWJRI_PLIST LENGTH EQU
VMASMMAX
SPACE 1
* remove record
SPACE 1
&$XXTRN BKWJRR
SSENROLLRECORDREMOVE EQU
SPACE 1
BKWJRR_PLIST DSECT

z/VM V3R1.0 RSK Programmer's Guide and Reference

A = drop type
*-BKWJDP_PLIST

BKWJCM

A * return code
A * reason code
A * dbase name
*-BKWJCM_PLIST

BKWJDL

A * return code
A * reason code
A C-block
*-BKWJDL_PLIST

BKWJRI

return code

reason code

dbase name

index

data

data Tength
* replace?

-BKWJRI_PLIST

* % ok X X %

BKWJRR

00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000

BKWJRR_PLIST_RC DS A * return code 00185000
BKWJRR_PLIST RE DS A * reason code 00186000
BKWJRR_PLIST_DBASE DS A * dbase name 00187000
BKWJRR_PLIST_INDEX DS A * index 00188000
BKWJRR_PLIST_LENGTH EQU *-BKWJRR_PLIST 00189000
VMASMMAX 00190000

SPACE 1 00191000

00192000

Tist records 00193000

* 00194000
SPACE 1 00195000

&$XXTRN BKWJRL 00196000
SSENROLLRECORDLIST EQU BKWJRL 00197000
SPACE 1 00198000
BKWJRL_PLIST DSECT 00199000
BKWJRL_PLIST_RC DS A * return code 00200000
BKWJRL_PLIST_RE DS A * reason code 00201000
BKWJRL_PLIST_DBASE DS A * dbase name 00202000
BKWJRL_PLIST_CB DS A * C-bTock 00203000
BKWJRL_PLIST_LENGTH EQU *-BKWJRL_PLIST 00204000
VMASMMAX 00205000

SPACE 1 00206000

00207000

get record 00208000
00209000

SPACE 1 00210000

&$XXTRN BKWJRG 00211000
SSENROLLRECORDGET EQU BKWJRG 00212000
SPACE 1 00213000
BKWJRG_PLIST DSECT 00214000
BKWJRG_PLIST_RC DS A * return code 00215000
BKWJRG_PLIST_RE DS A * reason code 00216000
BKWJRG_PLIST_DBASE DS A * dbase name 00217000
BKWJRG_PLIST_INDEX DS A * index 00218000
BKWJRG_PLIST_BUF DS A * buffer 00219000
BKWJRG_PLIST_BUFS DS A * buffer size 00220000
BKWJRG_PLIST_AR DS A * amt returned 00221000
BKWJRG_PLIST_LENGTH EQU *-BKWJRG_PLIST 00222000
VMASMMAX 00223000

SPACE 1 00224000

K e s * 00225000
* End of declarations * 00226000
K * 00227000
EJECT 00228000

POP PRINT 00229000

MEND 00230000

Memory Bindings (SSASMMEM MACRO)

Appendix I. Language Bindings 455

456

MACRO
SSASMMEM &WEAK=
AGO .@ASMME1
.* Branch around prolog so it is not included in listings *
JKhhhkkkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhdhddhhhrrrhhdddss
K *
> NAME - Reusable Server Kernel memory bindings *
W x *
.* FUNCTION - Defines memory constants and dsects *
KX *
.* COPYRIGHT - @VR20Z0Z
o* @VR20Z0Z
K 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z
S* LICENSED MATERIALS - PROPERTY OF IBM @VR2020Z
K SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z
S* ALL RIGHTS RESERVED @VR20Z0Z
KX *
.* STATUS - Version 2 Release 4 @VR20Z0Z
K *
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 *
SRRk khkkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhrkhrsxx
.* ADOO000-999999 New for VM/ESA Version 2 Release 4 @VR74PVM
JKRhkkkhkhkkhhhhhkhhhhkhkhhhhkhkhhhhhkhhhhhkhhhhhhhhhhkhkhkhhhkhkkhhkkhkhkkhkhkkkhkkkx
.GASMME1 ANOP
PUSH PRINT
AIF ('&SYSPARM' NE 'SUP').ASMME2
PRINT OFF,NOGEN
.ASMME2 ANOP
LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'
AIF ('&WEAK' NE 'YES').ASMME3
&$XXTRN SETC 'WXTRN'
.ASMME3 ANOP
T *
* Return and reason codes for memory functions *
i *
SPACE 1
*
* return codes
SS_MEM_RC_SUCCESS EQU 0
SS_MEM_RC_WARNING EQU 4
SS_MEM_RC_ERROR EQU 8
SS_MEM_RC_ABEND EQU 12
*
* reason codes
SS_MEM_RE_SUCCESS EQU 0
SS_MEM_RE_OUT_OF_STORAGE EQU 801
SS_MEM_RE_BAD_AMOUNT EQU 802
SS_MEM_RE_BAD_ALIGN EQU 803
SS_MEM_RE_NO_SUBPOOL EQU 804
SS_MEM_RE_NOT_ALLOC EQU 805
SS_MEM_RE_SUBPOOL_DELETED EQU 806
SS_MEM_RE_SPD_FAIL EQU 807
SS_MEM_RE_BAD KEY EQU 808
SS_MEM_RE_SUBPOOL_EXISTS EQU 809
SS_MEM_RE_SPCC_FAIL EQU 810
SS_MEM_RE_SPLA_FAIL EQU 811
*

z/VM V3R1.0 RSK Programmer's Guide and Reference

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000

K o o o *
* Constants for memory functions *
L e T T el *

SPACE 1
*
* Alignment attributes
*
SS_MEM_ALIGN_NORM EQU 0
SS_MEM_ALIGN_PAGE EQU 1

SPACE 1
K o - *
* Definitions for memory functions *
K o o *
*
* create a data space
*

SPACE 1

&$XXTRN BKWMCR
SSMEMORYCREATEDS EQU BKWMCR

SPACE 1
BKWMCR_PLIST DSECT
BKWMCR_PLIST_RC DS A % return code
BKWMCR_PLIST_RE DS A = reason code
BKWMCR_PLIST_SUBPOOL DS A * subpool name
BKWMCR_PLIST SIZE DS A % DS size (pages)
BKWMCR_PLIST KEY DS A * storage key
BKWMCR_PLIST_OCOUNT DS A * option count
BKWMCR_PLIST_OARRAY DS A = option array
BKWMCR_PLIST ASIT DS A = DS ASIT
BKWMCR_PLIST ALET DS A = DS ALET
BKWMCR_PLIST LENGTH EQU *-BKWMCR_PLIST

VMASMMAX
SPACE 1
allocate memory

SPACE 1

&$XXTRN BKWMAL
SSMEMORYALLOCATE EQU BKWMAL

SPACE 1
BKWMAL _PLIST DSECT
BKWMAL_PLIST_RC DS A % return code
BKWMAL_PLIST RE DS A * reason code
BKWMAL_PLIST LB DS A * Tower bound
BKWMAL_PLIST_UB DS A = upper bound
BKWMAL_PLIST SUBPOOL DS A * subpool name
BKWMAL_PLIST_ALIGN DS A = align type
BKWMAL PLIST BA DS A * buffer address
BKWMAL_PLIST_BG DS A = bytes gotten
BKWMAL_PLIST LENGTH EQU *-BKWMAL PLIST

VMASMMAX

SPACE 1
* release memory

SPACE 1

&$XXTRN BKWMRE
SSMEMORYRELEASE EQU BKWMRE

Appendix I. Language Bindings

00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000

457

SPACE 1
BKWMRE_PLIST DSECT
BKWMRE_PLIST_RC DS A % return code
BKWMRE_PLIST_RE DS A = reason code
BKWMRE_PLIST_BR DS A+ bytes released
BKWMRE_PLIST_SUBPOOL DS A % subpool name
BKWMRE_PLIST BA DS A * buffer address
BKWMRE_PLIST LENGTH EQU *-BKWMRE_PLIST

VMASMMAX

SPACE 1
* delete subpool
*

SPACE 1

&$XXTRN BKWMDE
SSMEMORYDELETE EQU BKWMDE

SPACE 1
BKWMDE_PLIST DSECT
BKWMDE_PLIST_RC DS A * return code
BKWMDE_PLIST_RE DS A % reason code
BKWMDE_PLIST_SUBPOOL DS A subpool name
BKWMDE_PLIST LENGTH EQU *-BKWMDE_PLIST

VMASMMAX

SPACE 1
g g g g g
* End of declarations
K o o o = = = = = = = = = = = = = = ——————

EJECT

POP PRINT

MEND

Storage Group Bindings (SSASMSGP MACRO)

MACRO

SSASMSGP &WEAK=

AGO .GASMSG1
.* Branch around prolog so it is not included in listings *
JKhRkhkkhhhhhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhhhhhhhhkhhhhhhkhhhhhhkhhhhhkkhrsx
W x *
.* NAME - Reusable Server Kernel storage group bindings *
K *
.* FUNCTION - Defines the storage group constants and dsects *
K
.* COPYRIGHT - @VR2020Z
o* @VR20Z0Z
o* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z
ok LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0z
o* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0z
o* ALL RIGHTS RESERVED @VR20Z0Z
oK *
.x STATUS - VM/ESA Version 2 Release 4 @VR2020Z
KX *
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 *
JRhkkkkhkhkhhhhhhhhhhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhddhhhhhhhhhrdrddd
.*x AD00000-999999 New for VM/ESA Version 2 Release 4 @VR2LMVM
JRhhkhkkkhhhhkhhhhhhhhhhhhhhhhhhhhhhhhdhdhdhhhhhhhhhhhhhhhdhddhhhhhhhhhrdrddd
.@ASMSG1 ANOP

PUSH PRINT

458

z/VM V3R1.0 RSK Programmer's Guide and Reference

00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000

AIF ('&SYSPARM' NE 'SUP').ASMSG2

PRINT OFF,NOGEN
.ASMSG2 ANOP

LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'

AIF ('&WEAK' NE 'YES').ASMSG3

&$XXTRN SETC 'WXTRN'

.ASMSG3 ANOP

K o *

* Return and reason codes for storage group functions *

K o - *
SPACE 1

* return codes

SS_SGP_RC_SUCCESS EQU 0
SS_SGP_RC_WARNING EQU 4
SS_SGP_RC_ERROR EQU 8
SS_SGP_RC_ABEND EQU 12
*
* reason codes
SS_SGP_RE_SUCCESS EQU 0
SS_SGP_RE_T0OO_MANY EQU 601
SS_SGP_RE_NOT_FOUND EQU 602
SS_SGP_RE_OUT_OF_STORAGE EQU 603
SS_SGP_RE_MX_ FAIL EQU 604
SS_SGP_RE_INIT_DONE EQU 605
SS_SGP_RE_EXISTS EQU 607
SS_SGP_RE_VDQ_FAIL EQU 608
SS_SGP_RE_ONLINE EQU 609
SS_SGP_RE_OFFLINE EQU 610
SS_SGP_RE_Q_FAIL EQU 611
SS_SGP_RE_CV_FAIL EQU 612
SS_SGP_RE_E_FAIL EQU 613
SS_SGP_RE_MAINT EQU 614
SS_SGP_RE_DS_FAIL EQU 615
SS_SGP_RE_POOL_FAIL EQU 616
SS_SGP_RE_MAP_FAIL EQU 617
SS_SGP_RE_BAD_ATTRIB EQU 618
SS_SGP_RE_REWRITE FAIL EQU 619
SS_SGP_RE_READ_ONLY EQU 620
SS_SGP_RE_OUT_OF_RANGE EQU 622
SS_SGP_RE_WRONG_MODE EQU 623
SS_SGP_RE_IO0 FAIL EQU 624
SS_SGP_RE DIAG_250 FAIL EQU 625
SS_SGP_RE_T00 BIG EQU 626
SS_SGP_RE_BAD_NAME EQU 628
SS_SGP_RE_NAME_IN USE EQU 629
SPACE 1
*
* attributes
SS_SGP_ATTRIB_DS EQU 0
SS_SGP_ATTRIB_NO_DS EQU 1
SS_SGP_ATTRIB_BLOCK_RW EQU 2
SS_SGP_ATTRIB_BLOCK RO EQU 3
SS_SGP_ATTRIB_OFFLINE EQU 7
SPACE 1
e e e e e e ————————— *
* Definitions for storage group functions *
T *

Appendix I. Language Bindings

00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000

459

SPACE 1 00084000

00085000

storage group create 00086000
00087000

SPACE 1 00088000

&$XXTRN BKWSGC 00089000
SSSGPCREATE EQU BKWSGC 00090000
SPACE 1 00091000
BKWSGC_PLIST DSECT 00092000
BKWSGC_PLIST_RC DS A % return code 00093000
BKWSGC_PLIST_RE DS A = reason code 00094000
BKWSGC_PLIST SGN DS A % sgp number 00095000
BKWSGC_PLIST_VDC DS A % vdev count 00096000
BKWSGC_PLIST_VDA DS A = vdev array 00097000
BKWSGC_PLIST_AC DS A % attrib count 00098000
BKWSGC_PLIST_AA DS A attrib array 00099000
BKWSGC_PLIST LENGTH EQU *-BKWSGC_PLIST 00100000
VMASMMAX 00101000

SPACE 1 00102000

* 00103000
* storage group delete 00104000
* 00105000
SPACE 1 00106000

&$XXTRN BKWSGD 00107000
SSSGPDELETE EQU BKWSGD 00108000
SPACE 1 00109000
BKWSGD_PLIST DSECT 00110000
BKWSGD_PLIST_RC DS A = return code 00111000
BKWSGD_PLIST_RE DS A % reason code 00112000
BKWSGD_PLIST_SGN DS A % sgp number 00113000
BKWSGD_PLIST_LENGTH EQU *-BKWSGD_PLIST 00114000
VMASMMAX 00115000

SPACE 1 00116000

00117000

storage group find 00118000
00119000

SPACE 1 00120000

&$XXTRN BKWSGF 00121000
SSSGPFIND EQU BKWSGF 00122000
SPACE 1 00123000
BKWSGF_PLIST DSECT 00124000
BKWSGF_PLIST_RC DS A % return code 00125000
BKWSGF_PLIST RE DS A * reason code 00126000
BKWSGF_PLIST_SGNAME DS A % sg name 00127000
BKWSGF_PLIST_SGN DS A * sgp number 00128000
BKWSGF_PLIST IOMODE DS A+ I/0 mode 00129000
BKWSGF_PLIST TOTAL DS A = total blocks 00130000
BKWSGF_PLIST LENGTH EQU *-BKWSGF_PLIST 00131000
VMASMMAX 00132000

SPACE 1 00133000

* 00134000
* storage group list (what's defined?) 00135000
* 00136000
SPACE 1 00137000

&$XXTRN BKWSGL 00138000
SSSGPLIST EQU BKWSGL 00139000
SPACE 1 00140000
BKWSGL_PLIST DSECT 00141000

460 z/vM V3R1.0 RSK Programmer's Guide and Reference

BKWSGL_PLIST RC
BKWSGL_PLIST RE
BKWSGL_PLIST NX
BKWSGL_PLIST NF
BKWSGL_PLIST SGNA
BKWSGL_PLIST LENGTH

SPACE 1
* storage group query
*

SPACE 1

&$XXTRN BKWSGQ
SSSGPQUERY

SPACE 1
BKWSGQ_PLIST
BKWSGQ_PLIST RC
BKWSGQ_PLIST RE
BKWSGQ_PLIST SGN
BKWSGQ_PLIST SGNAME
BKWSGQ_PLIST_IOMODE
BKWSGQ_PLIST TOTAL
BKWSGQ_PLIST STATUS
BKWSGQ_PLIST AX
BKWSGQ_PLIST AF
BKWSGQ_PLIST AA
BKWSGQ_PLIST VX
BKWSGQ_PLIST VF
BKWSGQ_PLIST VA
BKWSGQ_PLIST BA
BKWSGQ_PLIST LENGTH

SPACE 1
storage group read

SPACE 1

&$XXTRN BKWSGR
SSSGPREAD

SPACE 1
BKWSGR_PLIST
BKWSGR_PLIST RC
BKWSGR_PLIST RE
BKWSGR_PLIST_SGN
BKWSGR_PLIST PN
BKWSGR_PLIST PC
BKWSGR_PLIST ALET
BKWSGR_PLIST BUF
BKWSGR_PLIST LENGTH

SPACE 1

* storage group start (like
*

SPACE 1
&$XXTRN BKWSGS
SSSGPSTART

DS

DS

DS

DS

DS

EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS
EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

EQU
VMASMMAX

a mount)

EQU

return code
reason code
number expected
number filled

* sgp number array
-BKWSGL_PLIST

* X ok X

BKWSGQ

return code

reason code

sgp number

sg name

I/0 mode

total blocks

status word
attributes expected

attribute array
vdevs expected
vdevs filled 1in
vdev array

* blocks array
-BKWSGQ_PLIST

£ 0% ok X 3k X X X X X X % X

¥ > > > > > >>>>>> >

BKWSGR

return code
reason code

sgp number
page number
number of pages
buffer ALET

* buffer

-BKWSGR_PLIST

* % X X * X

* > > > > > >

BKWSGS

Appendix I. Language Bindings

attributes filled in

00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000
00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000

461

SPACE 1 00199000

BKWSGS_PLIST DSECT 00200000
BKWSGS_PLIST_RC DS A % return code 00201000
BKWSGS_PLIST_RE DS A = reason code 00202000
BKWSGS_PLIST_SGN DS A % sgp number 00203000
BKWSGS_PLIST_SGNAME DS A % sgp name 00204000
BKWSGS_PLIST_AC DS A * attribute count 00205000
BKWSGS_PLIST_AA DS A * attribute array 00206000
BKWSGS_PLIST_LENGTH EQU *-BKWSGS_PLIST 00207000
VMASMMAX 00208000

SPACE 1 00209000

00210000

storage group stop (like a dismount) 00211000
00212000

SPACE 1 00213000

&$XXTRN BKWSGT 00214000
SSSGPSTOP EQU BKWSGT 00215000
SPACE 1 00216000
BKWSGT_PLIST DSECT 00217000
BKWSGT_PLIST_RC DS A % return code 00218000
BKWSGT_PLIST_RE DS A reason code 00219000
BKWSGT_PLIST_SGN DS A % sgp number 00220000
BKWSGT_PLIST_AC DS A = attribute count 00221000
BKWSGT_PLIST_AA DS A * attribute array 00222000
BKWSGT_PLIST_LENGTH EQU *-BKWSGT_PLIST 00223000
VMASMMAX 00224000

SPACE 1 00225000

00226000

storage group write 00227000
00228000

SPACE 1 00229000

&$XXTRN BKWSGW 00230000
SSSGPWRITE EQU BKWSGW 00231000
SPACE 1 00232000
BKWSGW_PLIST DSECT 00233000
BKWSGW_PLIST_RC DS A * return code 00234000
BKWSGW_PLIST_RE DS A % reason code 00235000
BKWSGW_PLIST_SGN DS A * sgp number 00236000
BKWSGW_PLIST_PN DS A+ page number 00237000
BKWSGW_PLIST_PC DS A = page count 00238000
BKWSGW_PLIST_ALET DS A * buffer ALET 00239000
BKWSGW_PLIST_BUF DS A * buffer 00240000
BKWSGW_PLIST_LENGTH EQU *-BKWSGW_PLIST 00241000
VMASMMAX 00242000

SPACE 1 00243000

K * 00244000
* End of storage group declarations * 00245000
K o e e * 00246000
EJECT 00247000

POP PRINT 00248000

MEND 00249000

462 z/vM V3R1.0 RSK Programmer's Guide and Reference

Services Bindings (SSASMSRV MACRO)

MACRO SSA00010

SSASMSRV &WEAK= SSA00020

AGO .@ASMSR1 SSA00030
.* Branch around prolog so it is not included in listings = SSA00040
B R R R R R T SSAO0050
oE * SSA00060
.* NAME - Reusable Server Kernel services bindings * SSA00070
oK * SSA00080
.* FUNCTION - Defines the services constants and dsects * SSA00090
o* * SSA00100
.* COPYRIGHT - @VR20Z0Z SSA00110
o* @VR20Z0Z SSA00120
oK 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2020Z SSA00130
K LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z SSA00140
oK SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z SSA00150
K ALL RIGHTS RESERVED @VR20Z0Z SSA00160
o* * SSA00170
.* STATUS - Version 2 Release 4 @VR20Z0Z SSA00180
K = SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
R e L R L R L T SSA00210
.* AD00000-999999 New for VM/ESA Version 2 Release 4 @VR24PVM SSA00220
B R R T R e SSA00230
.@GASMSR1 ANOP SSA00240

PUSH PRINT SSA00250

AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00260

PRINT OFF,NOGEN SSA00270
.ASMSR2 ANOP SSA00280

LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300

AIF ('&WEAK' NE 'YES').ASMSR3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSR3 ANOP SSA00330
et e T * SSA00340
* Return and reason codes for services functions * SSA00350
R R * SSA00360

SPACE 1 SSA00370
* return codes SSA00380
SS_SRV_RC_SUCCESS EQU 0 SSA00390
SS_SRV_RC_WARNING EQU 4 SSA00400
SS_SRV_RC_ERROR EQU 8 SSA00410
SS_SRV_RC_ABEND EQU 12 SSA00420
* SSA00430
* reason codes SSA00440
SS_SRV_RE_SUCCESS EQU 0 $SA00450
SS_SRV_RE_BAD_TYPE EQU 701 SSA00460
SS_SRV_RE_NOT_FOUND EQU 702 SSAQ0470
SS_SRV_RE_OUT_OF_RANGE EQU 703 $SA00480
SS_SRV_RE_OUT OF STORAGE EQU 706 SSA00490
SS_SRV_RE_EXISTS EQU 709 $SA00500
* SSA00510
* types of messages SSA00520
SS_SRV_MSGTYPE_INSTANCE EQU 0 SSA00530
SS_SRV_MSGTYPE_LINEDRIVER EQU 1 SSA00540
* SSA00550
* types of services SSA00560

Appendix I. Language Bindings 463

SS_SRV_SRVTYPE_NORMAL EQU 0 $SAB0570

SS_SRV_SRVTYPE_LD EQU 1 SSA00580
SS_SRV_SRVTYPE_LDSS EQU 2 SSA00590
* SSA00600
* values of various msg bits... these have to line SSA00610
* up with the message structures below... be careful SSA00620
SS_SRV_IBIT CCLOSE EQU 32768 SSA00630
SS_SRV_IBIT ACLOSE EQU 16384 SSA00640
SS_SRV_IBIT_CDONE EQU 8192 SSA00650
SS_SRV_IBIT LDSTOP EQU 4096 SSA00660
SS_SRV_IBIT_NEWDATA EQU 2048 SSA00670
SS_SRV_LBIT_STOPACK EQU 32768 SSA00680
SS_SRV_LBIT_NEWDATA EQU 16384 SSA00690
* SSA0O700
* length of keys SSA00710
SS_SRV_KEYLENGTH EQU 32 SSA00720
SPACE 1 SSA00O730

K - * SSA00740
* Stuctures * SSA00750
K - * SSA00760
SPACE 1 SSA00O770

* SSA00780
* S-block SSA00790
* SSA0O800
VMSS_SBLOCK DSECT SSA00810
SBL_NEXT DS A x next service SSA00820
SBL_PREV DS A % prev service SSA00830
SBL_SN DS CL8 * its name SSA00840
SBL_SNL DS F * name length SSA00850
SBL_INITADDR DS A+ init addr SSA00860
SBL_AGTADDR DS A * agent addr SSA00870
SBL_CMPLADDR DS A+ cmpltn addr SSA00880
SBL_TYPE DS F * service type SSA00890
SBL_LOCKWORD DS F * lock word SSA00900
SBL_STARTCOUNT DS F * start count SSA00910
SBL_MONINDEX DS F * MON BUF INDEX SSA00920
VMSS_SBLOCK_LEN EQU *-VYMSS_SBLOCK SSA00930
SPACE 1 SSA00940

* SSA00950
* C-block SSA00960
* SSA00970
VMSS_CBLOCK DSECT SSA00980
VC_SBLOCK DS A SSA00990
VC_LDNAME DS CL8 SSA01000
VC_STATBITS DS XL4 SSA01010
ORG VC_STATBITS SSA01620

DS XL1 SSA01030

VC_B_RECORD EQU X'80" SSA01040
DS XL3 SSA01050

VC_QH DS F SSA01060
VC_SID DS F SSA01070
VC_INSTANCE DS F SSA01080
VC_THREADID DS F SSA01090
VC_IKEY DS CL32 SSA01100
VC_LKEY DS CL32 SSA01110
VC_USERID DS CL64 SSA01120
VC_BYTESIN DS F SSA01130
VC_BYTESOUT DS F SSA01140

464 z/vM V3R1.0 RSK Programmer's Guide and Reference

VC_IBW DS
VC_LDBW DS
VC_STARTSTCK DS
VC_STOPSTCK DS
VC_RESERVED DS
VC_LDDATA DS
VMSS_CBLOCK_LEN EQU
SPACE 1
*
* msg to instance
*
VMSS_IMSG DSECT
VI_IKEY DS
VI TYPE DS
VI _CBITS DS
ORG
DS
VI B CCLOSE EQU
VI B ACLOSE EQU
VI B _CDONE EQU
VI_B_LDSTOP EQU
VI B NEWDATA EQU
DS
VMSS_IMSG_LEN EQU
SPACE 1
*
* msg to Tine driver
*
VMSS_LMSG DSECT
VL_LKEY DS
VL_TYPE DS
VL_IKEY DS
VL_IBITS DS
ORG
DS
VL B _STOPACK EQU
VL _B_NEWDATA EQU
DS
VMSS_LMSG_LEN EQU
SPACE 1
* Definitions for services function
SPACE 1
*
* bind service to addresses
*
SPACE 1
&$XXTRN BKWVBN
SSSERVICEBIND EQU
SPACE 1
BKWVBN_PLIST DSECT
BKWVBN_PLIST RC DS
BKWVBN_PLIST RE DS
BKWVBN_PLIST_SN DS
BKWVBN_PLIST SNL DS
BKWVBN_PLIST_IA DS
BKWVBN_PLIST SA DS

F

F

cL8

cL8

CL128

0c
%-\MSS_CBLOCK

CL32

F

XL2
VI_CBITS
XL1
X'80"
X'40"
X'20"
X'10"
X'08'
XL1
%-VMSS_IMSG

CL32

F

CL32

XL2
VL_IBITS
XL1

X'80"

X'40"

XL1
%-\MSS_LMSG

BKWVBN

return code
reason code
service name
its length
init addr
service addr

> > > > >

* % %k X % X

Appendix I. Language Bindings

SSA01150
SSA01160
SSA01170
SSA01180
SSA01190
SSA01200
SSA01210
SSA01220
SSA01230
SSA01240
SSA01250
SSA01260
SSA01270
SSA01280
SSA01290
SSA01300
SSA01310
SSA01320
SSA01330
SSA01340
SSA01350
SSA01360
SSA01370
SSA01380
SSA01390
SSA01400
SSA01410
SSA01420
SSA01430
SSA01440
SSA01450
SSA01460
SSA01470
SSA01480
SSA01490
SSA01500
SSA01510
SSA01520
SSA01530
SSA01540
SSA01550
SSA01560
SSA01570
SSA01580
SSA01590
SSA01600
SSA01610
SSA01620
SSA01630
SSA01640
SSA01650
SSA01660
SSA01670
SSA01680
SSA01690
SSA01700
SSA01710
SSA01720

465

BKWVBN_PLIST_TA DS A % completion addr SSA01730

BKWVBN_PLIST_ST DS A service type SSA01740
BKWVBN_PLIST_LENGTH EQU *-BKWVBN_PLIST SSA01750
VMASMMAX SSA01760

SPACE 1 SSA01770

* SSA01780
* find service block SSA01790
* SSA01800
SPACE 1 SSA01810

&$XXTRN BKWVFN SSA01820
SSSERVICEFIND EQU BKWVFN SSA01830
SPACE 1 SSA01840
BKWVFN_PLIST DSECT SSA01850
BKWVFN_PLIST_RC DS A = return code SSA01860
BKWVFN_PLIST_RE DS A % reason code SSA01870
BKWVFN_PLIST_SN DS A service name SSA01880
BKWVFN_PLIST_SNL DS A * its Tength SSA01890
BKWVFN_PLIST SBLK DS A S-blk address SSA01900
BKWVFN_PLIST_LENGTH EQU *-BKWVFN_PLIST SSA01910
VMASMMAX SSA01920

SPACE 1 SSA01930

* SSA01940
* start the server SSA01950
* SSA01960
SPACE 1 SSA01970

&$XXTRN BKWVRN SSA01980
SSSERVERRUN EQU BKWVRN SSA01990
SPACE 1 SSAB2000
BKWVRN_PLIST DSECT SSA02010
BKWVRN_PLIST_RC DS A % return code SSA02020
BKWVRN_PLIST RE DS A * reason code SSA02030
BKWVRN_PLIST EPLIST DS A« ADDR OF EPLIST SSA02040
BKWVRN_PLIST_LENGTH EQU *-BKWVRN_PLIST SSA02050
VMASMMAX SSA02060

SPACE 1 SSA02070

* SSA02080
* stop the server SSA02090
* SSA02100
SPACE 1 SSA02110

&$XXTRN BKWVSP SSA02120
SSSERVERSTOP EQU BKWVSP SSAB2130
SPACE 1 SSA02140
BKWVSP_PLIST DSECT SSA02150
BKWVSP_PLIST_RC DS A % return code SSA02160
BKWVSP_PLIST_RE DS A reason code SSA02170
BKWVSP_PLIST_LENGTH EQU *-BKWVSP_PLIST SSA02180
VMASMMAX SSAB2190

SPACE 1 SSAB2200

K o o e * SSA02210
* End of declarations * SSA02220
K o * SSA02230
EJECT SSA02240

POP PRINT SSAB2250

MEND SSAB2260

466 z/VM V3R1.0 RSK Programmer's Guide and Reference

Trie Bindings (SSASMTRI MACRO)

MACRO

SSASMTRI &WEAK=

AGO .@ASMSR1
.* Branch around prolog so it is not included in listings *
JKRRkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhhhhkhhrhhhrhhhrhhrhkhhrhhhrkhhrhhrkhrsxx
W Kx *
.* NAME - Reusable Server Kernel services bindings *
KX *
.* FUNCTION - Language bindings for trie API *
oK *
W *
.* COPYRIGHT - *
KX *
SF THIS MODULE IS "RESTRICTED MATERIALS OF IBM" *
o* 5654-030 (C) COPYRIGHT IBM CORP. - 1998, 1999 *
K LICENSED MATERIALS - PROPERTY OF IBM *
S* ALL RIGHTS RESERVED. *
W x *
.* STATUS - VM/ESA Version 2, Release 4.0 *
KX *
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4.0 *
JERERIIRhkhhhhhhhhhhhhrhhhhhhhhhhhhrhhhhhhrhhhdhhhrhdrhhrhhdrhhrhhdrhdrhrrdrsxs
.* ADOO000-999999 New for VM/ESA Version 2 Release 4.0 @VR74PVM
JKhkkhkhkkhhhhhhhhhhhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhrkhrsx
.GASMSR1 ANOP

PUSH PRINT

AIF ('&SYSPARM' NE 'SUP').ASMSR2

PRINT OFF,NOGEN
.ASMSR2 ANOP

LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'

AIF ('&WEAK' NE 'YES').ASMSR3

&$XXTRN SETC
.ASMSR3 ANOP

"WXTRN'

g g g S g Sy g g g g G S R S gy *

* return and reason codes, and other constants *

g g S L g Sy g g g S g GRS g S R S gy *
SPACE 1

* return codes

SS_TRI_RC_SUCCESS

SS_TRI_RC_WARNI

SS_TRI_RC_ERROR
SS_TRI_RC_ABEND

*
* reason codes

SS_TRI_RE_SUCCESS

SS_TRI_RE_BAD_S

SS_TRI_RE_TRIE_
SS_TRI_RE_OUT_OF_STORAGE
SS_TRI_RE_DSCR_
SS_TRI_RE_TRIE_
SS_TRI_RE_TRIE_

SS_TRI_RE_BAD_I
SS_TRI_RE_BAD C

EQU
NG EQU
EQU
EQU
EQU
1ZE EQU
EXISTS EQU
EQU
FAIL EQU
NOT_FOUND EQU
BUSY EQU
NDEX_LEN EQU
APACITY EQU

Appendix I. Language Bindings

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000

467

SS_TRI_RE_OUT OF DS_STORAGE EQU 1709 00056000

* 00057000
SPACE 1 00058000

L et * 00059000
* entry point definitions * 00060000
K o * 00061000
SPACE 1 00062000

00063000

routine to create a trie 00064000

* 00065000
SPACE 1 00066000

&$XXTRN BKWYCR 00067000
SSTRIECREATE EQU BKWYCR 00068000
SPACE 1 00069000
BKWYCR_PLIST DSECT 00070000
BKWYCR_PLIST_RC DS A = return code 00071000
BKWYCR_PLIST_RE DS A % reason code 00072000
BKWYCR_PLIST_NAME DS A % trie name 00073000
BKWYCR_PLIST DS SIZE DS A * DS size 00074000
BKWYCR_PLIST ASIT DS A+ DS ASIT 00075000
BKWYCR_PLIST_ALET DS A * DS ALET 00076000
BKWYCR_PLIST LENGTH EQU *-BKWYCR_PLIST 00077000
VMASMMAX 00078000

SPACE 1 00079000

* 00080000
* routine to delete a trie 00081000
* 00082000
SPACE 1 00083000

&SXXTRN BKWYDE 00084000
SSTRIEDELETE EQU BKWYDE 00085000
SPACE 1 00086000
BKWYDE_PLIST DSECT 00087000
BKWYDE_PLIST_RC DS A return code 00088000
BKWYDE_PLIST_RE DS A % reason code 00089000
BKWYDE_PLIST_NAME DS A trie name 00090000
BKWYDE_PLIST LENGTH EQU *-BKWYDE_PLIST 00091000
SPACE 1 00092000

00093000

* routine to insert a record number 00094000
* 00095000
SPACE 1 00096000

&$XXTRN BKWYRI 00097000
SSTRIERECORDINSERT EQU BKWYRI 00098000
SPACE 1 00099000
BKWYRI_PLIST DSECT 00100000
BKWYRI_PLIST RC DS A * return code 00101000
BKWYRI_PLIST_RE DS A = reason code 00102000
BKWYRI_PLIST NAME DS A * trie name 00103000
BKWYRI_PLIST ALET DS A+ DS ALET 00104000
BKWYRI PLIST RECNUM DS A * record number 00105000
BKWYRI_PLIST IX BUFFER DS A * index buffer 00106000
BKWYRI_PLIST_IX_ LENGTH DS A * index length 00107000
BKWYRI_PLIST LENGTH EQU *-BKWYRI_PLIST 00108000
VMASMMAX 00109000

SPACE 1 00110000

* 00111000
* routine to list all record numbers matching proposed key 00112000
00113000

468 z/vM V3R1.0 RSK Programmer's Guide and Reference

SPACE 1
&$XXTRN BKWYRL

SSTRIERECORDLIST EQU BKWYRL

SPACE 1
BKWYRL_PLIST DSECT
BKWYRL_PLIST_RC DS A % return code
BKWYRL_PLIST RE DS A * reason code
BKWYRL_PLIST_NAME DS A % trie name
BKWYRL_PLIST_ALET DS A * DS ALET
BKWYRL_PLIST_IX_BUFFER DS A * index buffer
BKWYRL_PLIST_IX_LENGTH DS A * index Tength
BKWYRL_PLIST_RECNUM_ARRAY DS A % recnum array
BKWYRL_PLIST_RECNUM_ARRAY_CAP DS A % array capacity
BKWYRL_PLIST_RECNUMS_FOUND DS A * recnums found
BKWYRL_PLIST_LENGTH EQU *-BKWYRL_PLIST

VMASMMAX

SPACE 1
A e e e e e e e ——————————— *
* End of declarations *
K e e e e e e e — — — — — — — — — — — — — — — E —————————————————— *

EJECT

POP PRINT

MEND

User ID Bindings (SSASMUID MACRO)

MACRO
SSASMUID &WEAK=
AGO .@ASMSR1

.* Branch around prolog so it is not included in listings
JKRRRkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhkhhrhhhrhkhhrhhhrhkhhrhhrkhhrhdrhrsxs

ALL RIGHTS RESERVED

STATUS - Version 2 Release 4

* 0% ok Xk X % X ¥ X X %k X kX

NAME - Reusable Server Kernel services bindings
FUNCTION - Language bindings for userid service
COPYRIGHT -

5684-112 (C) COPYRIGHT IBM CORP.1991, 1992
LICENSED MATERIALS - PROPERTY OF IBM
SEE COPYRIGHT INSTRUCTIONS, G120-2083

CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4

*

*

* % ok X

@VR20Z0Z
@VR20Z0Z
@VR20Z0Z
@VR20Z0z
@VR20Z0Z
@VR20Z0z
*
@VR20Z0Z
*

*

JKRhkkkkkkhkhkkhkhkhkhkhkhkhkhhhkhkhhhhhkhhkhkhkhkhkhkhkhkhhhkhkhkhhhkhkkhkhkkhkhkkhkhkkkhkkk

.* ADOOOOO-999999 New for VM/ESA Version 2 Release 4

JRhkkkkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhhhhhhhhhhhhhhhhhdhdhhhhhhhhhrdrdcdd

.@ASMSR1 ANOP
PUSH PRINT

AIF ('&SYSPARM' NE 'SUP').ASMSR2

PRINT OFF,NOGEN
.ASMSR2 ANOP

LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'

AIF ('&WEAK' NE 'YES'
&$XXTRN SETC 'WXTRN'

) .ASMSR3

@VR24PVM

Appendix I. Language Bindings

00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000

469

.ASMSR3 ANOP 00033000

T e e TP * 00034000
* return and reason codes for userid service * 00035000
L e e e L P * 00036000
SPACE 1 00037000

* 00038000
* return codes 00039000
SS_UID_RC_SUCCESS EQU 0 00040000
SS_UID_RC_WARNING EQU 4 00041000
SS_UID_RC_ERROR EQU 8 00042000
SS_UID_RC_ABEND EQU 12 00043000
* 00044000
* reason codes 00045000
SS_UID RE_SUCCESS EQU 0 00046000
SS_UID_RE_NOT_FOUND EQU 101 00047000
* 00048000
* config constants 00049000
SS_UID_INDEX WIDTH EQU 64 00050000
SPACE 1 00051000

R et e ettt T * 00052000
* definitions for userid service * 00053000
R * 00054000
SPACE 1 00055000

* 00056000
* routine to map user IDs 00057000
* 00058000
SPACE 1 00059000

&$XXTRN BKWBMU 00060000
SSUSERIDMAP EQU BKWBMU 00061000
SPACE 1 00062000
BKWBMU_PLIST DSECT 00063000
BKWBMU_PLIST_RC DS A % return code 00064000
BKWBMU_PLIST_RE DS A reason code 00065000
BKWBMU_PLIST IC DS A * input conn 00066000
BKWBMU_PLIST_ICL DS A = its length 00067000
BKWBMU_PLIST IN DS A * input node 00068000
BKWBMU_PLIST INL DS A * its length 00069000
BKWBMU_PLIST IU DS A input user 00070000
BKWBMU_PLIST IUL DS A * its length 00071000
BKWBMU_PLIST_OU DS A = output user 00072000
BKWBMU_PLIST OUL DS A * its length 00073000
BKWBMU_PLIST LENGTH EQU *-BKWBMU_PLIST 00074000
VMASMMAX 00075000

SPACE 1 00076000
e e T T * 00077000
* End of declarations * 00078000
R et e L L * 00079000
EJECT 00080000

POP PRINT 00081000

MEND 00082000

470 z/vM V3R1.0 RSK Programmer's Guide and Reference

Worker Bindings (SSASMWRK MACRO)
MACRO

SSASMWRK &WEAK=
AGO .@ASMSR1
.* Branch around prolog so it is not included in listings *
JKRRkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhhhhkhhrhhhrhhhrhhrhkhhrhhhrkhhrhhrkhrsxx
W Kx *
.* NAME - Reusable Server Kernel services bindings *
KX *
.* FUNCTION - Language bindings for worker API *
Jk *
o * *
.* COPYRIGHT - *
o* *
SF THIS MODULE IS "RESTRICTED MATERIALS OF IBM" *
o* 5654-030 (C) COPYRIGHT IBM CORP. - 1998, 1999 *
K LICENSED MATERIALS - PROPERTY OF IBM *
S* ALL RIGHTS RESERVED. *
L * *
.* STATUS - VM/ESA Version 2, Release 4.0 *
KX *
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 3.0 *
.* @SI124VM - alternate userid *
W x *

JKhkkhkhkkhhhhhhhhhhhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhhhhrkhrsx

.* ADOOO00-999999 New for VM/ESA Version 2 Release 3.0 @VR74PVM
JKRhkkkhkkhhhhhkhhhhkhkhhhhkhkhhhhkhkhhhhhhhhhhhkhhhhkhkhkhhhkhkhkhkkhkhkhkhkkkhkkk
.GASMSR1 ANOP

PUSH PRINT

AIF ('&SYSPARM' NE 'SUP').ASMSR2

PRINT OFF,NOGEN
.ASMSR2 ANOP

LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'

AIF ('&WEAK' NE 'YES').ASMSR3
&$XXTRN SETC 'WXTRN'

.ASMSR3 ANOP

T *

* return and reason codes for userid service *

i *
SPACE 1

*

* return codes

SS_WRK_RC_SUCCESS EQU 0

SS_WRK_RC_WARNING EQU 4

SS_WRK_RC_ERROR EQU 8

SS_WRK_RC_ABEND EQU 12

*

* reason codes

SS_WRK_RE_SUCCESS EQU 0

SS_WRK_RE_OUT_OF_STORAGE EQU 1601

SS_WRK_RE_BAD_COUNT EQU 1602

SS_WRK_RE_BAD_FLAG_NAME EQU 1603

SS_WRK_RE BAD FLAG_VALUE EQU 1604

SS_WRK_RE_NO_CLASS EQU 1605

SS_WRK_RE_NO_SUBORDINATES EQU 1606

SS_WRK_RE_ALGTRIES EXCEEDED EQU 1607

Appendix I. Language Bindings

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011790
00012580
00013370
00014160
00014950
00015740
00016530
00017320
00018110
00018900
00019690
00020090
00020490
00021000
00022490
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000

471

SS_WRK_RE_AUTOLOG_FAIL EQU 1608 00054000

SS_WRK_RE_TIMER FAIL EQU 1609 00055000
SS_WRK_RE_TIUCVCON_FAIL EQU 1610 00056000
SS_WRK_RE_FORCE_FAIL EQU 1611 00057000
SS_WRK_RE_FORCE_TIMEOUT EQU 1612 00058000
SS_WRK_RE_OPER_DELETE EQU 1613 00059000
* 00060000
* option flag names 00061000
SS_WRK_OFN_PREFER_EMPTY EQU 0 00062000
SS_WRK_OFN_RETRY_COUNT EQU 1 00063000
SS_WRK_OFN_ALT_USERID EQU 2 @SI124VM 00063300
SS_WRK OFN_ALT_SECLABEL EQU 3 @SI124VM 00063600
* 00064000
* option value names 00065000
SS_WRK_OFV_NO EQU 0 00066000
SS_WRK_OFV_YES EQU 1 00067000
SPACE 1 00068000

K - * 00069000
* definitions for worker API * 00070000
K - * 00071000
SPACE 1 00072000

00073000

* routine to allocate a worker connection 00074000
00075000

SPACE 1 00076000

&$XXTRN BKWCAL 00077000
SSWORKERALLOCATE EQU BKWCAL 00078000
SPACE 1 00079000
BKWCAL_PLIST DSECT 00080000
BKWCAL_PLIST_RC DS A % return code 00081000
BKWCAL_PLIST RE DS A * reason code 00082000
BKWCAL_PLIST_ICBLOCK DS A = instance C-block ptr 00083000
BKWCAL_PLIST_CLASSNAME DS A = class name 00084000
BKWCAL_PLIST OCOUNT DS A * option count 00085000
BKWCAL_PLIST_ONAMES DS A = option names 00086000
BKWCAL PLIST OVALUES DS A * option values 00087000
BKWCAL_PLIST_WCBLOCK DS A % worker C-block ptr 00088000
BKWCAL_PLIST CONNID DS A * connection ID 00089000
BKWCAL_PLIST LENGTH EQU *-BKWCAL_PLIST 00090000
VMASMMAX 00091000

SPACE 1 00092000

K - * 00093000
* End of declarations * 00094000
K * 00095000
EJECT 00096000

POP PRINT 00097000

MEND 00098000

PL/X Language Bindings

472 z/vM V3R1.0 RSK Programmer's Guide and Reference

Anchor Bindings (SSPLXANC

*COPY SSPLXANC

COPY)

00001000
00002000

R T 2 R S 2 2 a2 2T T e ey A o ToToTo RIS 16]0]

/*

/* NAME - Reusable Server Kernel PL/X bindings

/*

/* FUNCTION - Language bindings for anchor services.

/*

/* COPYRIGHT - @VR20Z0Z
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2020Z
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z
/* ALL RIGHTS RESERVED @VR20Z0Z
/*

/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z
/*

/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4

*/ 00004000
*/ 00005000
*/ 00006000
*/ 00007000
*/ 00008000
*/ 00009000
*/ 00010000
*/ 00011000
*/ 00012000
*/ 00013000
*/ 00014000
*/ 00015000
*/ 00016000
*/ 00017000

R S e Ty A oo [o N1 [¢]0]

Declare
/* constants */

/* return codes =*/
$S_anc_rc_success
$s_anc_rc_warning
$s_anc_rc_error
ss_anc_rc_abend

/* reason codes */
SS_anc_re_success

/* entry points x/

/* set anchor */
ssAnchorSet entry
(
fixed(31),
fixed(31),
pointer(31)
)
external as ('BKWA

/* get anchor =*/
ssAnchorGet entry
(
fixed(31),
fixed(31),
pointer(31),
pointer(31),
fixed(31)
)
external as ('BKWA

/*
/*

ST'),

/*
/*
/*
/*

GT');

fixed(31)
fixed(31)
fixed(31)
fixed(31)

fixed(31)

return code
reason code
anchor value

return code
reason code
anchor value
monitor buf
monitor Tlen

*/
*/
*/

*/
*/
*/
*/
*/

constant(0),
constant(4),
constant(8),
constant(12),

constant(0),

Appendix I. Language Bindings

00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000

473

Authorization Bindings (SSPLXAUT COPY)

*COPY SSPLXAUT 00001000
00002000

/**/ 00003000
/* */ 00004000
/* NAME - Reusable Server Kernel PL/X Bindings */ 00005000
/* */ 00006000
/* FUNCTION - Language bindings for authorization services. */ 00007000
/* */ 00008000
/* COPYRIGHT - @VR20Z0Z */ 00009000
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z =/ 00010000
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z =/ 00011000
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z */ 00012000
/* ALL RIGHTS RESERVED @VR20Z0Z */ 00013000
/* */ 00014000
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z =/ 00015000
/* */ 00016000
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ 00017000
R S T e Ty A oo [o N1 [¢]0]
00019000

/**/ 00020000
/* CONSTANTS */ 00021000
/**[00022000
00023000

Declare 00024000
00025000

/* return codes =/ 00026000
ss_aut_rc_success fixed(31) constant(0), 00027000
ss_aut_rc_warning fixed(31) constant(4), 00028000
ss_aut_rc_error fixed(31) constant(8), 00029000
ss_aut_rc_abend fixed(31) constant(12), 00030000
00031000

/* reason codes */ 00032000
ss_aut_re_success fixed(31) constant(0), 00033000
ss_aut_re_bad count fixed(31) constant(300+1), 00034000
ss_aut_re_bad user length fixed(31) constant(300+2), 00035000
ss_aut_re_bad obj length fixed(31) constant(300+3), 00036000
ss_aut_re_bad option fixed(31) constant(300+4), 00037000
ss_aut_re_bad_qual fixed(31) constant(300+5), 00038000
ss_aut_re_bad use fixed(31) constant(300+6), 00039000
ss_aut_re_exists fixed(31) constant(300+7), 00040000
ss_aut_re no_class fixed(31) constant(300+8), 00041000
ss_aut_re no object fixed(31) constant(300+9), 00042000
ss_aut_re_maq_fail fixed(31) constant(300+10), 00043000
ss_aut_re cvw_fail fixed(31) constant(300+11), 00044000
ss_aut_re_cvs_fail fixed(31) constant(300+12), 00045000
ss_aut_re mr_fail fixed(31) constant(300+13), 00046000
ss_aut_re_too_many fixed(31) constant(300+14), 00047000
ss_aut_re_out_of_storage fixed(31) constant(300+15), 00048000
ss_aut_re_no_user fixed(31) constant(300+16), 00049000
ss_aut_re_prev_io_error fixed(31) constant(300+17), 00050000
ss_aut_re prev_sync_error fixed(31) constant(300+18), 00051000
ss_aut_re_read fail fixed(31) constant(300+19), 00052000
ss_aut_re write fail fixed(31) constant(300+20), 00053000
ss_aut_re_trunc fixed(31) constant(300+21), 00054000
ss_aut_re_gwu_fail fixed(31) constant(300+22), 00055000
ss_aut_re_open_fail fixed(31) constant(300+23), 00056000

474 z/vM V3R1.0 RSK Programmer's Guide and Reference

ss_aut_re_bad_cache fixed(31) constant(300+24),
ss_aut_re_bad free fixed(31) constant(300+25),
ss_aut_re_bad op fixed(31) constant(300+26),

/* other constants =/

/* return values from ssAuthTestOperations =*/
/* and ssAuthPermitUser =*/

ss_aut_op_permitted fixed(31) constant(0),
ss_aut_op_not permitted fixed(31) constant(l),
ss_aut_op_not_defined fixed(31) constant(2),
ss_aut_no_change fixed(31) constant(3),

/* qualifiers for ssAuthPermitUser =/
ss_aut_add operation fixed(31) constant(0),
ss_aut_remove operation fixed(31) constant(1l),

/* use arrays in ssAuthPermitUser? x/

ss_aut_use_arrays fixed(31) constant(0),
ss_aut_delete all fixed(31) constant(1),
ss_aut_add_all fixed(31) constant(2),

/* qualifiers for ssAuthDeleteObject =*/
ss_aut_rules only fixed(31) constant(0),
ss_aut_rules_and object fixed(31) constant(1l),

/* qualifiers for ssAuthDeleteUser */
ss_aut_specific_class fixed(31) constant(0),
ss_aut_all _classes fixed(31) constant(1),

/* qualifiers for ssAuthDeleteClass */
ss_aut_objects only fixed(31) constant(0),
ss_aut_objects_and class fixed(31) constant(1);

/**/

/* ENTRY POINTS

*/

/**/

Declare

/**/

/* operations on classes */
/**/

/* create class */
ssAuthCreateClass entry

(
fixed(31), /* return code */
fixed(31), /* reason code */
character(8), /* class identifier =/
fixed(31), /* operation count */
character(4) /* operation array */
)

external as ('BKWucC'),

/* modify class =/
ssAuthModifyClass entry
(

Appendix I. Language Bindings

00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000

475

476

fixed(31),

fixed(31),
character(8),
fixed(31),
character(4)

)

external as ('BKWUMC'),

/* list classes x/
ssAuthListClasses entry
(

fixed(31),

fixed(31),

char(*),

fixed(31),

fixed(31),

char(*),

fixed(31)

)
external as ('BKWULC'),

/* delete class */
ssAuthDeleteClass entry
(
fixed(31),
fixed(31),
character(8),
fixed(31),
fixed(31)
)
external as ('BKWuDC'),

/**/

/* operations on objects
/**/

/* create object =/

ssAuthCreateObject entry

(

fixed(31),

fixed(31),
character(*),
fixed(31),
character(8)

)

external as ('BKWUC0'),

/*
/*
/*

/*

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/* Tist objects in class */

ssAuthListObjects entry
(

fixed(31),

fixed(31),

char(8),

char(x),

fixed(31),

fixed(31),
pointer(31),
fixed(31),

z/VM V3R1.0 RSK Programmer's Guide and Reference

/*
/*
/*
/*
/*
/*
/*
/*

return code
reason code
class identifier
operation count
operation array

return code
reason code
match key

match key length
number expected
output buffer
number returned

return code
reason code
class identifier
options count
options array

return code
reason code
object name
its length

object class

return code
reason code
class name

match key

match key length
number expected
buffer pointers
buffer sizes

*/
*/
*/

*/

*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/

00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000

fixed(31),

fixed(31)

)

external as ('BKWULO'),

/* query an object */
ssAuthQueryObject entry
(
fixed(31),
fixed(31),
character(x),
fixed(31),
character(8),
fixed(31),
pointer(31),
fixed(31),
fixed(31),
fixed(31)
)
external as ('BKWUQOD'),

/* delete object =/
ssAuthDeleteObject entry
(
fixed(31),
fixed(31),
character(x),
fixed(31),
fixed(31),
fixed(31)
)
external as ('BKWUDO'),

/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

returned lengths

number returned

return code
reason code
object name
its Tength
class name

userids expected

userid ptrs

userid buf sizes

userid lengths

userids returned

return code
reason code
object name
its length
options count
options array

*/
*/

*/
*/
*/
*/
*/
*/

/**/

/* operations on users

*/

/**/

/* permit user x/
ssAuthPermitUser entry
(
fixed(31),
fixed(31),
character(x),
fixed(31),
character(*),
fixed(31),
fixed(31),
fixed(31),
character(4),
fixed(31),
fixed(31)
)
external as ('BKWUPU'),

/* query specific rule =/

ssAuthQueryRule entry

(
fixed(31),

/*
/*
/*
/*
/*
/*
/*
/*

/*

/*

return code
reason code
user name

its length
object name

its Tength

use arrays?
operation count
operation array
op qualifiers
op results

return code

*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

Appendix I. Language Bindings

00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000
00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000
00199000
00200000
00201000
00202000
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000
00220000
00221000
00222000
00223000
00224000
00225000
00226000
00227000
00228000
00229000
00230000

477

fixed(31), /* reason code

character(x), /* user name
fixed(31), /* its Tlength
character(*), /* object name
fixed(31), /* its Tlength
fixed(31), /* ops expected
character(4), /* operation array
fixed(31) /* ops returned

)
external as ('BKWUQR'),

/* test operations */
ssAuthTestOperations entry

(
fixed(31), /* return code
fixed(31), /* reason code
character(*), /* user name
fixed(31), /* its length
character(x), /* object name
fixed(31), /* its length
fixed(31), /* operation count
character(4), /* desired ops
fixed(31) /* test results

)

external as ('BKWUTO'),

/* delete user */
ssAuthDeleteUser entry

(
fixed(31), /* return code
fixed(31), /* reason code
character(*), /* user name
fixed(31), /* its Tlength
character(8), /* class name
fixed(31), /* options count
fixed(31) /* options array

)

external as ('BKWuDU'),

/**/

*/

/**/

/* utility functions

/* try to reset access to data files =*/
ssAuthReload entry

(
fixed(31), /* return code */
fixed(31) /* reason code */

)
external as ('BKWURL');

478 z/vM V3R1.0 RSK Programmer's Guide and Reference

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

*/

00231000
00232000
00233000
00234000
00235000
00236000
00237000
00238000
00239000
00240000
00241000
00242000
00243000
00244000
00245000
00246000
00247000
00248000
00249000
00250000
00251000
00252000
00253000
00254000
00255000
00256000
00257000
00258000
00259000
00260000
00261000
00262000
00263000
00264000
00265000
00266000
00267000
00268000
00269000
00270000
00271000
00272000
00273000
00274000
00275000
00276000
00277000
00278000
00279000
00280000
00281000

Cache Bindings (SSPLXCAC COPY)

*COPY SSPLXCAC 00001000
00002000

/**/ 00003000
/* */ 00004000
/* NAME - Reusable Server Kernel PL/X bindings */ 00005000
/* */ 00006000
/* FUNCTION - Language bindings for file cache. */ 00007000
/* */ 00008000
/* COPYRIGHT - @VR20Z0Z */ 00009000
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z */ 00010000
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z =/ 00011000
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z =/ 00012000
/* ALL RIGHTS RESERVED @VR20Z0Z */ 00013000
/* */ 00014000
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z =/ 00015000
/* */ 00016000
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ 00017000
R S e Ty A oo [o N1 [¢]0]
00019000

/**/ 00020000
/* CONSTANTS */ 00021000
/**[00022000
00023000

Declare 00024000
00025000

/* return codes =/ 00026000
SS_Cac_rc_success fixed(31) constant(0), 00027000
ss_cac_rc_warning fixed(31) constant(4), 00028000
ss_cac_rc_error fixed(31) constant(8), 00029000
ss_cac_rc_abend fixed(31) constant(12), 00030000
00031000

/* reason codes */ 00032000
SS_Cac_re_success fixed(31) constant(0), 00033000
ss_cac_re out_of storage fixed(31) constant(1501), 00034000
ss_cac_re_table_replaced fixed(31) constant(1502), 00035000
ss_cac_re_cache_not_found fixed(31) constant(1503), 00036000
ss_cac_re_dscr _fail fixed(31) constant(1504), 00037000
ss_cac_re_cache_exists fixed(31) constant(1505), 00038000
ss_cac_re_bad size fixed(31) constant(1506), 00039000
ss_cac_re_bad_token fixed(31) constant(1511), 00040000
ss_cac_re_bad length fixed(31) constant(1512), 00041000
ss_cac_re_bad count fixed(31) constant(1513), 00042000
ss_cac_re_bad_esmd] fixed(31) constant(1514), 00043000
ss_cac_re_bad_fname fixed(31) constant(1515), 00044000
ss_cac_re_bad fval fixed(31) constant(1516), 00045000
ss_cac_re_exist fail fixed(31) constant(1517), 00046000
ss_cac_re_file_not_found fixed(31) constant(1518), 00047000
ss_cac_re_delete_in_progress fixed(31) constant(1519), 00048000
ss_cac_re_bad offset fixed(31) constant(1520), 00049000
ss_cac_re_bad_table_id fixed(31) constant(1521), 00050000
ss_cac_re_table not_found fixed(31) constant(1522), 00051000
ss_cac_re_open_fail fixed(31) constant(1523), 00052000
ss_cac_re_bad recfm fixed(31) constant(1524), 00053000
ss_cac_re_bad Trec] fixed(31) constant(1525), 00054000
ss_cac_re_out_of_storage_ds fixed(31) constant(1526), 00055000
ss_cac_re_read fail fixed(31) constant(1527), 00056000

Appendix I. Language Bindings 479

ss_cac_re_bad data_stream fixed(31) constant(1528), 00057000

00058000

/* open flag names =*/ 00059000
ss_cac_ofn_xlate fixed(31) constant(0), 00060000
ss_cac_ofn_preserve dolr fixed(31) constant(1), 00061000
ss_cac_ofn_bfs fixed(31) constant(2), 00062000
ss_cac_ofn_recmethod fs fixed(31) constant(3), 00063000
ss_cac_ofn_recmethod cache fixed(31) constant(4), 00064000
00065000

/* open flag values */ 00066000
ss_cac_ofv_no fixed(31) constant(0), 00067000
ss_cac_ofv_yes fixed(31) constant(1); 00068000
00069000

/**/ 00070000
/* STRUCTURES */ 00071000
/**/ 00072000
00073000

R R T e e T Ty 00074000
/* FUNCTIONS */ 00075000
R R R e Ty 00076000
00077000

Declare 00078000
00079000

R R S T e T T ey 00080000
/* cache creation and deletion */ 00081000
/**/ 00082000
00083000

/* create a cache */ 00084000
ssCacheCreate entry 00085000
(00086000
fixed(31), /* return code */ 00087000
fixed(31), /* reason code */ 00088000
char(8), /* cache name */ 00089000
fixed(31), /* pages rqstd */ 00090000
fixed(31) /* ALET */ 00091000

) 00092000
external as ('BKWOCC'), 00093000
00094000

/* delete a cache */ 00095000
ssCacheDelete entry 00096000
(00097000
fixed(31), /* return code */ 00098000
fixed(31), /* reason code */ 00099000
char(8) /* cache name */ 00100000

) 00101000
external as ('BKWOCD'), 00102000
00103000

R R S T e T e ey 00104000
/* utility functions */ 00105000
/**/ 00106000
00107000

/* queries cache utilitization */ 00108000
ssCacheQuery entry 00109000
(00110000
fixed(31), /* return code */ 00111000
fixed(31), /* reason code */ 00112000
char(8), /* cache name */ 00113000
fixed(31), /* files cached =/ 00114000

480 z/vM V3R1.0 RSK Programmer's Guide and Reference

fixed(31), /*
fixed(31), /*
fixed(31), /%
fixed(31) /*
)

external as ('BKWOCQ'),

/* sets translation table x/
ssCacheX1TabSet entry

(

fixed(31), /*
fixed(31), /*
fixed(31), /*
char(256) /*

)
external as ('BKWOTS'),

cache size
amt in use
open count
hit count

return code
reason code
table ID
table

*/
*/
*/

*/
*/
*/

/**/

/* file management primitives

*/

/**/

/* begin using cached file */
ssCacheFileOpen entry

(
fixed(31), /*
fixed(31), /*
char(8), /*
char(*), /*
fixed(31), /*
char(x), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
char(8), /*
fixed(31), /*
pointer(31), /*
fixed(31), /*
char(32) /*

)

external as ('BKWOFO0'),

/* read cached file */
ssCacheFileRead entry

(
fixed(31), /*
fixed(31), /*
char(8), /*
char(8), /*
fixed(31), /*
fixed(31), /%
char(*), /*
fixed(31) /*

)

external as ('BKWOFR'),

/* done using cached file */
ssCacheFileClose entry

return code
reason code
cache name
file spec
its Tength
ESM data
its length
flag count

flag name array
flag value array

file token
ALET
address
length

last update date

return code
reason code
cache name
file token
byte offset
num of bytes

output buffer
bytes returned

*/
*/
*/
*/
*/
*/
*/
*/

Appendix I. Language Bindings

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000

481

(00173000

fixed(31), /* return code */ 00174000

fixed(31), /* reason code */ 00175000

char(8), /* cache name */ 00176000

char(8) /* file token %/ 00177000

) 00178000
external as ('BKWOFC'); 00179000
00180000

Client Bindings (SSPLXCLI COPY)

*COPY SSPLXCLI 00001000
00002000

/**/ 00003000
/* *x/ 00004000
/* NAME - Reusable Server Kernel PL/X bindings */ 00005000
/* *x/ 00006000
/* FUNCTION - Language bindings for client services */ 00007000
/* */ 00008000
/* COPYRIGHT - @VR20Z0Z */ 00009000
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z =/ 00010000
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z */ 00011000
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z */ 00012000
/* ALL RIGHTS RESERVED @VR20Z0Z =/ 00013000
/* x/ 00014000
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z */ 00015000
/* *x/ 00016000
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ 00017000
/**/ 00018000
00019000

/**/ 00020000
/* constants */ 00021000
/**/ 00022000
00023000

Declare 00024000
00025000

/* return codes x/ 00026000
ss_cli_rc_success fixed(31) constant(0), 00027000
ss_cli_rc_warning fixed(31) constant(4), 00028000
ss_cli_rc_error fixed(31) constant(8), 00029000
ss_cli_rc_abend fixed(31) constant(12), 00030000
00031000

/* reason codes =*/ 00032000
ss_cli_re_success fixed(31) constant(0), 00033000
ss_cli_re_out_of range fixed(31) constant(900+1), 00034000
ss_cli_re out_of storage fixed(31) constant(900+2), 00035000
ss_cli_re_bad iam fixed(31) constant(900+3), 00036000
ss_cli_re_bad method fixed(31) constant(900+4), 00037000
ss_cli_re_semc_fail fixed(31) constant(900+5), 00038000
00039000

/* who i am */ 00040000
ss_cli_iam_instance fixed(31) constant(0), 00041000
ss_cli_iam_linedriver fixed(31) constant(1), 00042000
00043000

/* ways to get data */ 00044000
ss_cli_method_read fixed(31) constant(0), 00045000
ss_cli_method_peek fixed(31) constant(1), 00046000
ss_cli_method discard fixed(31) constant(2); 00047000

482 z/vM V3R1.0 RSK Programmer's Guide and Reference

/**/

/* structures */
/**/

/**/

/* entry points */

/**/

Declare

/* initialize client data queues x/
ssClientDatalnit entry

(
fixed(31), /* return code */
fixed(31), /* reason code */
pointer(31), /* C-block addr =/
char(8) /* subpool name */
)

external as ('BKWIIN'),

/* terminate client data queues x/
ssClientDataTerm entry

(
fixed(31), /* return code */
fixed(31), /* reason code %/
pointer(31) /* C-block addr =/
)

external as ('BKWITM'),

/* get input from client C-block =/
ssClientDataGet entry

(

fixed(31), /* return code */
fixed(31), /* reason code */
fixed(31), /* instance or 1d? */
pointer(31), /* C-block pointer */
fixed(31), /* get method */
fixed(31), /* ALET to use */
char(*), /* buffer */
fixed(31), /* amt wanted */
fixed(31), /* amt given */
fixed(31) /* amt left */

)
external as ('BKWIDG'),

/* put output onto client C-block =*/
ssClientDataPut entry

(
fixed(31), /* return code */
fixed(31), /* reason code */
fixed(31), /* instance or 1d? */
pointer(31), /* C-block pointer */
fixed(31), /* ALET to use */
char(*), /* buffer */
fixed(31), /* amt to put */
fixed(31) /* new amount */

)

Appendix I. Language Bindings

00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000

483

external as ('BKWIDP');

*COPY SSPLXENR

Enrollment Bindings (SSPLXENR COPY)

00106000
00107000

00001000
00002000

R S T e e Ty A o To[eTo RIS [¢[6]

@VR20z0Z
@VR20z0Z
@VR20Z0z
@VR20z0Z
@VR20Z0Z

/*

/* NAME - Reusable Server Kernel PL/X bindings
/*

/* FUNCTION - Language bindings for enrollment services.
/*

/* COPYRIGHT -

/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992

/* LICENSED MATERIALS - PROPERTY OF IBM

/* SEE COPYRIGHT INSTRUCTIONS, G120-2083

/* ALL RIGHTS RESERVED

/*

/* STATUS - VM/ESA Version 2 Release 4

/*
/* CHANGE ACTIVITY

- New for VM/ESA Version 2 Release 4

@VR20Z0Z

*/ 00004000
*/ 00005000
*/ 00006000
*/ 00007000
*/ 00008000
*/ 00009000
*/ 00010000
*/ 00011000
*/ 00012000
*/ 00013000
*/ 00014000
*/ 00015000
*/ 00016000
*/ 00017000

[RFE R R I IIERKIIIERKIHERRIFIERRKFERRIFARRI IR ERR I IR IR I TR AR xR R xxxxkxxxx/ 00018000

/***/

/* CONSTANTS

*/

/***/

Declare

/* API maxima */
ss_enr_index_width
ss_enr_max_data

/* return codes x/
SS_enr_rc_success
ss_enr_rc_warning
Ss_enr_rc_error
ss_enr_rc_abend

/* reason codes */
SS_enr_re_success
ss_enr_re_db _not found
ss_enr_re_rec_not_found
ss_enr_re_truncated
ss_enr_re_dirty
ss_enr_re_rec_exists
ss_enr_re_bad Tength
ss_enr_re_bad_droptype
ss_enr_re_no_storage
ss_enr_re_close fail
ss_enr_re_write _fail
ss_enr_re_bad method
ss_enr_re_open_fail
ss_enr_re_gwu_fail
ss_enr_re_point_fail
ss_enr_re_exist_fail
ss_enr_re_not_sfs

z/VM V3R1.0 RSK Programmer's Guide and Reference

fixed(31)
fixed(31)

fixed(31)
fixed(31)
fixed(31)
fixed(31)

fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)

constant(64),
constant(65450),

constant(0),
constant(4),
constant(8),
constant(12),

constant(0),

constant(1000+1),
constant(1000+2),
constant(1000+3),
constant(1000+4),
constant(1000+5),
constant(1000+6),
constant(1000+7),
constant(1000+8),
constant(1000+9),
constant(1000+10),
constant(1000+11),
constant (1000+12),
constant(1000+13),
constant(1000+14),
constant (1000+15),
constant(1000+16),

00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000

ss_enr_re_not_v
ss_enr_re_dscr_fail
ss_enr_re_read fail
ss_enr_re_db_exists
ss_enr_re_comm fail
ss_enr_re_not_disk
ss_enr_re_bad_kind
ss_enr_re_new_file
Ss_enr_re_no_sets
Ss_enr_re_set_empty

/* KIND types */
ss_enr_kind_memory
ss_enr_kind disk

/* INSERT types =/
ss_enr_insert new
ss_enr_insert_replace

/* DROP types =*/
ss_enr_drop_commit
ss_enr_drop_rollback

fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)

fixed(31)
fixed(31)

fixed(31)
fixed(31)

fixed(31)
fixed(31)

constant(1000+17),
constant(1000+18),
constant (1000+19),
constant (1000+20),
constant(1000+21),
constant (1000+22),
constant(1000+23),
constant(1000+24),
constant(1000+25),
constant(1000+26),

constant(0),
constant(1),

constant(0),
constant(1),

constant(0),
constant(1);

/***/

/* ENTRY POINTS

*/

/***/

Declare

/* commit enrollment data base */

ssEnrol1Commit entry
(
fixed(31),
fixed(31),
char(8)
)
external as ('BKWJCM'),

/*
/*
/*

/* drop enrollment data base

ssEnrol1Drop entry
(
fixed(31),
fixed(31),
char(8),
fixed(31)
)
external as ('BKWJDP'),

/* 1ist data bases =*/
ssEnrollList entry

(

fixed(31),

fixed(31),

pointer(31)

)
external as ('BKWJDL'),

/*
/*
/*
/*

/*
/*
/*

/* 1oad enrollment data base

return code */
reason code %/
dbase name */

*/

return code */
reason code %/
dbase name */

drop type

return code */
reason code %/

C-block

*/

Appendix I. Language Bindings

00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000

485

486

ssEnrollload entry
(

fixed(31),
fixed(31),
char(8),
fixed(31),
fixed(31),
char(*),
fixed(31)

)

external as ('BKWJLO'),

/* get record */
ssEnrol1RecordGet entry
(
fixed(31),
fixed(31),
char(8),
char(ss_enr_index_width),
char(*),
fixed(31),
fixed(31)
)
external as ('BKWJRG'),

/* insert record */
ssEnrol1RecordInsert entry
(
fixed(31),
fixed(31),
char(8),
char(ss_enr_index_width),
char(*),
fixed(31),
fixed(31)
)
external as ('BKWJRI'),

/* 1ist records */
ssEnrol1RecordList entry
(

fixed(31),

fixed(31),

char(8),

pointer(31)

)
external as ('BKWJRL'),

/* remove record */
ssEnrol1RecordRemove entry
(

fixed(31),

fixed(31),

char(8),
char(ss_enr_index_width)
)
external as ('BKWJRR');

z/VM V3R1.0 RSK Programmer's Guide and Reference

/*

/*
/*
/*
/*

/*
/*
/*

return code =*

reason code =*
dbase name =
DS kind *
DS size *
filename *
length of *

/*
/*
/*
/*

/*
/*

/*

/*
/*
/*
/*
/*

return code
reason code
dbase name
index
buffer

buf size
amt returne

return code
reason code
dbase name
index

data

length
replace?

return code
reason code
dbase name
C-block

/*
/*
/*
/*

return code
reason code
dbase name
index

/
/
/
/
/
/
/

d

*/
*/
*/

*/
*/
*/
*/

*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000

Memory Bindings (SSPLXMEM COPY)

*CO

PY SSPLXMEM

00001000
00002000

R T 2 R S 2 2 a2 2T T e ey A o ToToTo RIS 16]0]

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

NAME -

FUNCTION -

COPYRIGHT -

5684-112 (C) COPYRIGHT IBM CORP.1991, 1992

Reusable Server Kernel

Language bindings for memory services.

LICENSED MATERIALS - PROPERTY OF IBM
SEE COPYRIGHT INSTRUCTIONS, G120-2083

ALL RIGHTS

RESERVED

STATUS - VM/ESA Version 2 Release 4

CHANGE ACTIVITY

- New for VM/ESA Version 2 Release 4

PL/X bindings

@VR20Z0Z
@VR20z0Z
@VR20Z0Z
@VR20z0Z
@VR20z0Z

@VR20Z0Z

*/ 00004000
*/ 00005000
*/ 00006000
*/ 00007000
*/ 00008000
*/ 00009000
*/ 00010000
*/ 00011000
*/ 00012000
*/ 00013000
*/ 00014000
*/ 00015000
*/ 00016000
*/ 00017000

R S e Ty A oo [o N1 [¢]0]

De

clare

/* return and reason codes */

S
S
S
S

S

ss_mem_re out of storage
ss_mem_re_bad_amount
ss_mem_re_bad_align
ss_mem_re_no_subpool
ss_mem_re_not_alloc
ss_mem_re_subpool deleted

S
S

ss_mem_re_subpool_exists
ss_mem_re_spcc_fail
ss_mem_re_spla_fail

S_mem_rc_success
S_mem_rc_warning
S_mem_rc_error
s_mem_rc_abend

S_mem_re_success

s_mem_re_spd_fail
s_mem_re_bad_key

fixed(31)
fixed(31)
fixed(31)

constant(0),
constant(4),
constant(8),

fixed(31)

fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)

/* alignment attributes */

S
S

s_mem_align_norm
s_mem_align_page

fixed(31)
fixed(31)

/* create a data space we can manage */
ssMemoryCreateDS entry

(

fixed(31),
fixed(31),
char(8),
fixed(31),
fixed(31),
fixed(31),
fixed(31),
char(8),
fixed(31)

/*
/*
/*
/*
/*
/*
/*
/*
/*

return code
reason code
subpool name
size (pages)
storage key
option count
option array
ASIT

ALET

constant(12),

constant(0),

constant (800+1),
constant (800+2),
constant(800+3),
constant (800+4),
constant (800+5),
constant (800+6),
constant (800+7),
constant (800+8),
constant(800+9),
constant (800+10),
constant (800+11),

constant(0),
constant(1),

*/
*/
*/
*/
*/
*/
*/
*/
*/

Appendix I. Language Bindings

00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000

487

)

external as ('BKWMCR'),

/* allocate memory */
ssMemoryAllocate entry
(

fixed(31),
fixed(31),
fixed(31),
fixed(31),
character(8),
fixed(31),
pointer(31),
fixed(31)

)

external as ('BKWMAL'),

/* release memory */
ssMemoryRelease entry
(

fixed(31),

fixed(31),

fixed(31),
character(8),
pointer(31)

)

external as ('BKWMRE'),

/* delete subpool */
ssMemoryDelete entry
(

fixed(31),
fixed(31),
character(8)

)

external as ('BKWMDE');

/*
/*

/*
/*
/*
/*

/*
/*
/*

/*

/*
/*
/*

return code
reason code
Tower bound
upper bound
subpool name

*/
*/
*/
*/
*/

alignment rqt */
addr of block */
amount gotten */

return code
reason code

bytes released

subpool name

addr of block

return code
reason code
subpool name

Storage Group Bindings (SSPLXSGP COPY)

488

*COPY SSPLXSGP

*/
*/
*/
*/
*/

*/
*/
*/

00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000

00001000
00002000

[Fkk Rk rkkh kR kkhhkkhkhk Rk hhhkkhhhh Rk hhhkhhhhkkhhhkrhhhkkrrrrrxrrrrxxrx/ 00003000

@VR20Z0Z
@VR20z0Z
@VR20z0Z
@VR20Z0Z
@VR20Z0Z

/*

/* NAME - Reusable Server Kernel PL/X bindings
/*

/* FUNCTION - Language bindings for storage group services.
/*

/* COPYRIGHT -

/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992

/* LICENSED MATERIALS - PROPERTY OF IBM

/* SEE COPYRIGHT INSTRUCTIONS, G120-2083

/* ALL RIGHTS RESERVED

/*

/* STATUS - VM/ESA Version 2 Release 4

/*

/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4

@VR20Z0Z

*/ 00004000
*/ 00005000
*/ 00006000
*/ 00007000
*/ 00008000
*/ 00009000
*/ 00010000
*/ 00011000
*/ 00012000
*/ 00013000
*/ 00014000
*/ 00015000
*/ 00016000
*/ 00017000

[Frk gk kkk kR kkk kR Rk k kR R Rk kR Rk hhhRhhh kR hhhhkhhhkrhhkrrrrkrrxrrrrxxxx/ 00018000

z/VM V3R1.0 RSK Programmer's Guide and Reference

00019000

[Fkk g rkkh kR kkhhkkkhhk Rk hhhkkhhhh Rk hhhkhhhhkkhhhkrhhhrkrrrrrxrrrrxxrx/ 00020000

/* CONSTANTS *x/ 00021000
/**/ 00022000
00023000

Declare 00024000
00025000

/* return codes x/ 00026000

SS_Sgp_rc_success fixed(31) constant(0), 00027000

Ss_sgp_rc_warning fixed(31) constant(4), 00028000

SS_sgp_rc_error fixed(31) constant(8), 00029000

ss_sgp_rc_abend fixed(31) constant(12), 00030000

00031000

/* reason codes =*/ 00032000

SS_Sgp_re_success fixed(31) constant(0), 00033000

ss_sgp_re_too_many fixed(31) constant(600+1), 00034000

ss_sgp_re_not_found fixed(31) constant(600+2), 00035000

ss_sgp_re_out_of storage fixed(31) constant(600+3), 00036000

ss_sgp_re_mx_fail fixed(31) constant(600+4), 00037000

ss_sgp_re_init_done fixed(31) constant(600+5), 00038000

ss_sgp_re_exists fixed(31) constant(600+7), 00039000

ss_sgp_re_vdq_fail fixed(31) constant(600+8), 00040000

ss_sgp_re_online fixed(31) constant(600+9), 00041000

ss_sgp_re_offline fixed(31) constant(600+10), 00042000

ss_sgp_re_q fail fixed(31) constant(600+11), 00043000

ss_sgp_re_cv_fail fixed(31) constant(600+12), 00044000

ss_sgp_re_e fail fixed(31) constant(600+13), 00045000

ss_sgp_re_maint fixed(31) constant(600+14), 00046000

ss_sgp_re_ds fail fixed(31) constant(600+15), 00047000

ss_sgp_re_pool fail fixed(31) constant(600+16), 00048000

ss_sgp_re _map_fail fixed(31) constant(600+17), 00049000

ss_sgp_re_bad attrib fixed(31) constant(600+18), 00050000

ss_sgp_re_rewrite fail fixed(31) constant(600+19), 00051000

ss_sgp_re_read only fixed(31) constant(600+20), 00052000

ss_sgp_re_out_of range fixed(31) constant(600+22), 00053000

ss_sgp_re_wrong_mode fixed(31) constant(600+23), 00054000

ss_sgp_re_io_fail fixed(31) constant(600+24), 00055000

ss_sgp_re diag 250 fail fixed(31) constant(600+25), 00056000

ss_sgp_re_too_big fixed(31) constant(600+26), 00057000

ss_sgp_re_bad_name fixed(31) constant(600+28), 00058000

SS_sgp_re_name_in_use fixed(31) constant(600+29), 00059000

00060000

/* attributes =*/ 00061000

ss_sgp_attrib_ds fixed(31) constant(0), 00062000

ss_sgp_attrib_no_ds fixed(31) constant(1), 00063000

ss_sgp_attrib_block rw fixed(31) constant(2), 00064000

ss_sgp_attrib_block ro fixed(31) constant(3), 00065000

ss_sgp_attrib _offline fixed(31) constant(7); 00066000

00067000

/**/ 00068000
/* FUNCTIONS */ 00069000
/**/ 00070000
00071000

Declare 00072000
00073000

/* storage group create */ 00074000

ssSgpCreate entry 00075000

(00076000

Appendix I. Language Bindings 489

490

fixed(31), /* return code

fixed(31), /* reason code
fixed(31), /* sg number
fixed(31), /* num of vdevs
fixed(31), /* vdev array
fixed(31), /* attrib count
fixed(31) /* attrib array

)
external as ('BKWSGC'),

/* storage group delete */
ssSgpDelete entry

(
fixed(31), /* return code
fixed(31), /* reason code
fixed(31) /* sg number

)

external as ('BKWSGD'),

/* storage group find */
ssSgpFind entry

(
fixed(31), /* return code */
fixed(31), /* reason code */
char(8), /* sg name */
fixed(31), /* sgp id */
fixed(31), /* 1/0 mode */
fixed(32) /* total blks =/

)

external as ('BKWSGF'),

/* storage group list (what's defined?) =/
ssSgpList entry

(
fixed(31), /* return code
fixed(31), /* reason code
fixed(31), /* num expected
fixed(31), /* number filled in
fixed(31) /* array for IDs

)

external as ('BKWSGL'),

/* storage group query (details on particular sg) =*/

ssSgpQuery entry

fixed(31), /* return code
fixed(31), /* reason code
fixed(31), /* sgp id

char(8), /* sg name
fixed(31), /* i/o mode
fixed(32), /* total blocks
fixed(31), /* status word
fixed(31), /* attrib expected
fixed(31), /* attrib filled 1in
fixed(31), /* attrib array
fixed(31), /* vdevs expected
fixed(31), /* vdevs filled in
fixed(31), /* vdev array

z/VM V3R1.0 RSK Programmer's Guide and Reference

*/
*/
*/

*/
*/
*/

%/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000

fixed(31)
)

external as

('BKWSGQ'),

/* blks array

/* storage group read */
ssSgpRead entry

(
fixed(31),
fixed(31),
fixed(31),
fixed(32),
fixed(32),
fixed(31),

character(*)

)

external as

('BKWSGR'),

/*

/*
/*
/*
/*

return code
reason code
sgp ID

page number
num of pgs
buffer ALET
buffer

/* storage group start (like a mount) =*/
ssSgpStart entry

(
fixed(31),
fixed(31),
fixed(31),
char(8),
fixed(31),
fixed(31)

)

external as

('BKWSGS'),

/*
/*
/*
/*
/*
/*

return
reason
sgp id

code
code

sgp name

attrib
attrib

count
array

/* storage group stop (like a dismount) */
ssSgpStop entry

fixed(31),

fixed(31),

fixed(31),

fixed(31),

fixed(31)
)

external as

('BKWSGT'),

/*
/*
/*
/*
/*

/* storage group write =/

ssSgpWrite

(
fixed(31),
fixed(31),
fixed(31),
fixed(32),
fixed(32),
fixed(31),

entry

character(*)

)

external as

('BKWSGW');

return
reason
sgp ID
attrib
attrib

/*

/*
/*
/*
/*

code
code

count
array

return code
reason code
sgp ID

page number
num of pgs
buffer ALET
buffer

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/

Appendix I. Language Bindings

00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000
00187000

491

Services Bindings (SSPLXSRV COPY)
*COPY SSPLXSRV

492

00001000
00002000

R T 2 R S 2 2 e 2T T ey A o ToToTo RIS 16]0]

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

NAME -

FUNCTION -

COPYRIGHT -

Reusable Server Kernel

Language bindings for service services.

PL/X bindings

5684-112 (C) COPYRIGHT IBM CORP.1991, 1992
LICENSED MATERIALS - PROPERTY OF IBM
SEE COPYRIGHT INSTRUCTIONS, G120-2083

ALL RIGHTS

RESERVED

STATUS - VM/ESA Version 2 Release 4

CHANGE ACTIVITY

- New for VM/ESA Version 2 Release 4

@VR20Z0Z
@VR20z0Z
@VR20Z0Z
@VR20z0Z
@VR20z0Z

@VR20Z0Z

*/ 00004000
*/ 00005000
*/ 00006000
*/ 00007000
*/ 00008000
*/ 00009000
*/ 00010000
*/ 00011000
*/ 00012000
*/ 00013000
*/ 00014000
*/ 00015000
*/ 00016000
*/ 00017000

R S T e Ty A oo [o N1 [¢]0]

/**/

/* constants
/**/

Declare

/* return codes x/

SS_Srv_rc_success
SS_srv_rc_warning
ss_srv_rc_error
ss_srv_rc_abend

/* reason codes */

SS_Srv_re_success

ss_srv_re_bad_type
ss_srv_re_not_found
ss_srv_re_out_of_range
ss_srv_re out _of storage

SS_srv_re_exists

fixed(31)
fixed(31)
fixed(31)
fixed(31)

fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)

/* types of messages */

ss_srv_msgtype_instance
ss_srv_msgtype linedriver

fixed(31)
fixed(31)

/* types of services */

ss_srv_srvtype_normal

ss_srv_srvtype 1d

ss_srv_srvtype_ldss

/* values of various msg bits...
/* up with the message structures below...

ss_srv_ibit_cclose
ss_srv_ibit_aclose
ss_srv_ibit cdone
ss_srv_ibit_Tdstop

ss_srv_ibit_newdata

fixed(31)
fixed(31)
fixed(31)

fixed(16)
fixed(16)
fixed(16)
fixed(16)
fixed(16)

z/VM V3R1.0 RSK Programmer's Guide and Reference

constant(0),
constant(4),
constant(8),
constant(12),

constant(0),

constant(700+1),
constant (700+2),
constant(700+3),
constant(700+6),
constant(700+9),

constant(0),
constant(1),

constant(0),
constant(1),
constant(2),

these have to line =/

be careful =/
constant(32768),
constant(16384),
constant(8192),
constant (4096),
constant(2048),

*/

00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000

ss_srv_1bit_stopack
ss_srv_1bit newdata

/* length of keys */
ss_srv_keylength

fixed(16) constant(32768),
fixed(16) constant(16384),

fixed(31) constant(32);

/**/

/* structures
/**/

Declare

/* S-

block =/

1 vmss_sbhlock

5

o1 o1 o1 o1 OO OO o1 Ol

/* C-

sb1_next
sb1_prev
sb1_sn
sb1_snl

sb1 _initaddr
sb1_agtaddr
sb1_cmpTladdr
sb1_type
sb1_Tlockword
sb1_startcount
sb1_monindex

block =/

1 vmss_cblock

5
5
5

o101 Ol o1 OO OO o1 OO o1 oo Ot

vc_shlock
vc_ldname
vc_statbits
10 vc_b_record
vc_gh

ve_sid
vc_instance
vc_threadid
vc_ikey
vc_lkey
vc_userid
vc_bytesin
vc_bytesout
vc_ibw
vc_1ldbw
vc_startstck
vc_stopstck
vc_reserved
vc_lddata

/* msg to instance */
1 wvmss_imsg

5
5
5

vi_ikey
vi_type
vi_cbits
10 vi_b_cclose
10 vi_b_aclose
10 vi_b_cdone
10 vi_b Tldstop

10 vi_b newdata

Boundary(Word) Based,

pointer(31),
pointer(31),
character(8),
fixed(31),
pointer(31),
pointer(31),
pointer(31),
fixed(31),
fixed(31),
fixed(31),
fixed(31),

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

next service =*/
prev service =/
its name */
name length =/
init addr */
agent addr */
cmpltn addr %/
service type =/
Tock word */
start count =/
mon buf index */

boundary(word) based,

pointer(31),
character(8),

bit(32),
bit(1),
fixed(31),
fixed(31),
fixed(31),
fixed(31),

character(ss_srv_keylength),
character(ss_srv_keylength),

character(64),

fixed(31),
fixed(31),
fixed(31),
fixed(31),
char(8),
char(8),
char(128),
char(0),

boundary(word) based,
character(ss_srv_keylength),

fixed(31),
bit(16),
bit(1),
bit(1),
bit(1),
bit(1),
bit(1),

Appendix I. Language Bindings

00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000

493

00115000

/* msg to line driver */ 00116000
1 vmss_lImsg boundary(word) based, 00117000
5 v1_lkey character(ss_srv_keylength), 00118000

5 vl _type fixed(31), 00119000

5 vl_ikey character(ss_srv_keylength), 00120000

5 vl _ibits bit(16), 00121000

10 v1_b stopack bit(1), 00122000

10 v1_b newdata bit(1); 00123000
00124000

R e T YA 00125000
/* entry points */ 00126000
/**/ 00127000
00128000

Declare 00129000
00130000

/* bind service to addresses */ 00131000
ssServiceBind entry 00132000
(00133000
fixed(31), /* return code */ 00134000
fixed(31), /* reason code */ 00135000
character(x), /* service name */ 00136000
fixed(31), /* its length */ 00137000
pointer(31), /* init addr */ 00138000
pointer(31), /* service addr */ 00139000
pointer(31), /* completion addr */ 00140000
fixed(31) /* service type */ 00141000
) 00142000
external as ('BKWVBN'), 00143000
00144000

/* find service block */ 00145000
ssServiceFind entry 00146000
(00147000
fixed(31), /* return code %/ 00148000
fixed(31), /* reason code */ 00149000
character(x), /* service name */ 00150000
fixed(31), /* its length */ 00151000
pointer(31) /* S-blk address */ 00152000
) 00153000
external as ('BKWVFN'), 00154000
00155000

/* start the server */ 00156000
ssServerRun entry 00157000
(00158000
fixed(31), /* return code */ 00159000
fixed(31) /* reason code */ 00160000
) 00161000
external as ('BKWVRN'), 00162000
00163000

/* stop the server x/ 00164000
ssServerStop entry 00165000
(00166000
fixed(31), /* return code */ 00167000
fixed(31) /* reason code */ 00168000
) 00169000
external as ('BKWVSP'); 00170000
00171000

494 z/vM V3R1.0 RSK Programmer's Guide and Reference

Trie Bindings (SSPLXTRI COPY)

*COPY SSPLXTRI 00001000
00002000

R T R R S e 2T 00003000
/* */ 00004000
/* external bindings for trie routines */ 00005000
/* */ 00006000
/* */ 00007000
/* Brian Wade April 1999 */ 00008000
/* */ 00009000
/**/ 00010000
00011000

00012000

R R R et T e ey 00013000
/* constants */ 00014000
R T R R S e 2 00015000
00016000

Declare 00017000
00018000

/* ssTrie return codes =/ 00019000
ss_tri_rc_success fixed(31) constant(0), 00020000
ss_tri_rc_warning fixed(31) constant(4), 00021000
ss_tri_rc_error fixed(31) constant(8), 00022000
ss_tri_rc_abend fixed(31) constant(12), 00023000
00024000

/* ssTrie reason codes */ 00025000
ss_tri_re_success fixed(31) constant(0), 00026000
ss_tri_re bad size fixed(31) constant(1700+1), 00027000
ss_tri_re_trie_exists fixed(31) constant(1700+2), 00028000
ss_tri_re out of storage fixed(31) constant(1700+3), 00029000
ss_tri_re_dscr_fail fixed(31) constant(1700+4), 00030000
ss_tri_re_trie_not_found fixed(31) constant(1700+5), 00031000
ss_tri_re_trie_busy fixed(31) constant(1700+6), 00032000
ss_tri_re_bad index_len fixed(31) constant(1700+7), 00033000
ss_tri_re_bad capacity fixed(31) constant(1700+8), 00034000
ss_tri_re_out_of _ds_storage fixed(31) constant(1700+9); 00035000
00036000

00037000

R T Ty 00038000
/* Entry points */ 00039000
R e T e e Ty 00040000
00041000

Declare 00042000
00043000

/* ssTrieCreate */ 00044000
ssTrieCreate entry 00045000
(00046000
fixed(31), /* return code */ 00047000
fixed(31), /* reason code */ 00048000
char(8), /* trie name */ 00049000
fixed(31), /* DS size (pgs) =/ 00050000
char(8), /* ASIT */ 00051000
fixed(31) /* ALET */ 00052000

) 00053000
external as ('BKWYCR'), 00054000
00055000

/* ssTrieDelete */ 00056000

Appendix I. Language Bindings 495

ssTrieDelete entry
(
fixed(31),
fixed(31),
char(8)
)
external as ('BKWYDE'),

/* ssTrieRecordInsert =*/
ssTrieRecordInsert entry

(
fixed(31),
fixed(31),
char(8),
fixed(31),
fixed(31),
char(*),
fixed(31)
)
external as ('BKWYRI'),

/* ssTrieRecordList =/
ssTrieRecordList entry
(

fixed(31),

fixed(31),

char(8),

fixed(31),

char(*),

fixed(31),

fixed(31),

fixed(31),

fixed(31)

)
external as ('BKWYRL');

/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*

User ID Bindings (SSPLXUID COPY)

496

*COPY SSPLXUID

return code
reason code
trie name

return code
reason code
trie name
trie ALET
record number
index buffer
index length

return code
reason code
trie name

trie ALET
index buffer
index length
recnum array
array capacity
recs found

*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000

00001000
00002000

R R T T L ey A o To[eTo] e [¢[e]

/*

/* NAME - Reusable Server Kernel PL/X bindings
/*

/* FUNCTION - Language bindings for userid services
/*

/* COPYRIGHT -

/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992

/* LICENSED MATERIALS - PROPERTY OF IBM

/* SEE COPYRIGHT INSTRUCTIONS, G120-2083

/* ALL RIGHTS RESERVED

/*

/* STATUS - VM/ESA Version 2 Release 4

/*
/* CHANGE ACTIVITY

- New for VM/ESA Version 2 Release 4

@VR20Z0Z
@VR20Z0Z
@VR20z0Z
@VR20z0Z
@VR20Z0Z

@VR20Z0Z

*/ 00004000
*/ 00005000
*/ 00006000
*/ 00007000
*/ 00008000
*/ 00009000
*/ 00010000
*/ 00011000
*/ 00012000
*/ 00013000
*/ 00014000
*/ 00015000
*/ 00016000
*/ 00017000

[Fkk ok rhkkkkkkkkkkhkhkkhhhhkkhhhh Rk khhkkhhhkkhhhkkkhhkkrkrhkrxrxrrxxxx/ 00018000

z/VM V3R1.0 RSK Programmer's Guide and Reference

00019000

/***/
/* CONSTANTS */
/***/

Declare

/* config constants */

ss_uid_index_width fixed(31) constant(64),
/* return and reason codes */

ss_uid_rc_success fixed(31) constant(0),

ss_uid_rc_warning fixed(31) constant(4),

ss_uid_rc_error fixed(31) constant(8),

ss_uid_rc_abend fixed(31) constant(12),
ss_uid_re_success fixed(31) constant(0),

ss_uid_re_not_found fixed(31) constant(100+1);

/***/

/* STRUCTURES */

/***/
/***/

/* FUNCTIONS */

/***/

Declare

/* routine to map user IDs =*/
ssUseridMap entry

(
fixed(31), /* return code */
fixed(31), /* reason code */
character(*), /* input conn %/
fixed(31), /* its length */
character(*), /* input node */
fixed(31), /* its length */
character(*), /* input user */
fixed(31), /* its length */
character(ss_uid_index_width), /* output user */
fixed(31) /* its length */

)

external as ('BKWBMU');

Worker Bindings (SSPLXWRK COPY)
*COPY SSPLXWRK

00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000

00001000
00002000

[Fkk Rk xkkhkkkkhhkkhhh kR khhhkkhhhk Rk khhkhkhhhkrkhhhkrhkhhkkrrrrrxrrrrxxrx/ 00003000

/*

/* NAME - Reusable Server Kernel PL/X bindings
/*

/* FUNCTION - Language bindings for worker services
/*

/* COPYRIGHT -

/*

/* THIS MODULE IS "RESTRICTED MATERIALS OF IBM"

*/ 00004000
*/ 00005000
*/ 00006000
*/ 00007000
*/ 00008000
*/ 00009790
*/ 00010580
*/ 00011370

Appendix I. Language Bindings 497

498

/* 5654-030 (C) COPYRIGHT IBM CORP. - 1998, 1999

/* LICENSED MATERIALS - PROPERTY OF IBM

/* ALL RIGHTS RESERVED.

/*

/* STATUS - VM/ESA Version 2, Release 4.0

/*

/* CHANGE ACTIVITY - New for VM/ESA Version X Release Y
/* @SI124VM - alternate userid support in worker API

*/ 00012160
*/ 00012950
*/ 00013740
*/ 00014530
*/ 00015320
*/ 00016110
*/ 00017000
*/ 00017500

[Fkk ok rkkhkkkkhhkkhhh kR khhhkkhhhh Rk hhhkkhhhkkhhhkrkhhkkrrrrrxrrrrxxrx/ 00018000

00019000
R R e T ey 00020000
/* CONSTANTS */ 00021000
/***/ 00022000

00023000
Declare 00024000

00025000
/* return and reason codes */ 00026000
ss_wrk_rc_success fixed(31) constant(0), 00027000
ss_wrk_rc_warning fixed(31) constant(4), 00028000
ss_wrk_rc_error fixed(31) constant(8), 00029000
ss_wrk_rc_abend fixed(31) constant(12), 00030000

00031000
ss_wrk_re_success fixed(31) constant(0), 00032000
ss_wrk_re out_of storage fixed(31) constant(1600+1), 00033000
ss_wrk_re_bad_count fixed(31) constant(1600+2), 00034000
ss_wrk_re_bad flag_name fixed(31) constant(1600+3), 00035000
ss_wrk_re_bad_flag_value fixed(31) constant(1600+4), 00036000
ss_wrk_re_no_class fixed(31) constant(1600+5), 00037000
ss_wrk_re _no_subordinates fixed(31) constant(1600+6), 00038000
ss_wrk_re_algtries_exceeded fixed(31) constant(1600+7), 00039000
ss_wrk_re_autolog_fail fixed(31) constant(1600+8), 00040000
ss_wrk_re_timer_fail fixed(31) constant(1600+9), 00041000
ss_wrk_re_iucvcon_fail fixed(31) constant(1600+10), 00042000
ss_wrk_re_force_fail fixed(31) constant(1600+11), 00043000
ss_wrk_re_force_timeout fixed(31) constant(1600+12), 00044000
ss_wrk_re_oper delete fixed(31) constant(1600+13), 00045000

00046000
/* option flag names */ 00047000
ss_wrk_ofn_prefer_empty fixed(31) constant(0), 00048000
ss_wrk_ofn_retry_count fixed(31) constant(1l), 00049000
ss_wrk_ofn_alt userid fixed(31) constant(2), /*@SI1124VM=/ 00049300
ss_wrk_ofn_alt_seclabel fixed(31) constant(3), /*@SI1124VM=/ 00049600

00050000
/* option flag values =*/ 00051000
ss_wrk_ofv_no fixed(31) constant(0), 00052000
ss_wrk_ofv_yes fixed(31) constant(1l); 00053000

00054000
/***/ 00055000
/* STRUCTURES */ 00056000
/***/ 00057000

00058000
/***/ 00059000
/* FUNCTIONS */ 00060000
R R T 2T 00061000

00062000
Declare 00063000

00064000
/* allocate a worker machine x/ 00065000

z/VM V3R1.0 RSK Programmer's Guide and Reference

ssWorkerAllocate entry
(

fixed(31),

fixed(31),
pointer(31),

char(8),

fixed(31),

fixed(31),

fixed(31),
pointer(31),
fixed(31)

)
external as ('BKWCAL');

/*

/*
/*
/*
/*

/*
/*

return code
reason code
instance C-bTock
class name
option count
option names
option values
worker C-block
connection ID

Appendix I. Language Bindings

*/

*/
*/
*/
*/

*/
*/

00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000

499

500 z/VvM V3R1.0 RSK Programmer's Guide and Reference

Appendix J. What's Changed Since the Beta

The reusable server kernel was available from http://www.vm.ibm.com/ in beta form
for several months before it became generally available. There are some
differences between the beta level and the GA level. The following table
summarizes the differences and describes the actions you must take to convert
your program to run on the GA level.

Table 57 (Page 1 of 2). Differences Between Beta and GA Levels

Topic

Beta

GA

Action

Name of your
mainline

VSSMAIN

RSKMAIN

Edit and recompile or
reassemble your mainline.

Profile file name

PROFILE VMSS

PROFILE RSK

Change the name of your
profile.

Subcom name VMSS RSK Change your EXECs to use
ADDRESS RSK.

Entry point VSSxxx BKWxxx Recompile or reassemble

names your program.

Names of CMS-
or CP-managed
objects the
server kernel
creates
(mutexes,
semaphores,
condition
variables,
gqueues,
subpools,
HNDIUCV exit
names, data
spaces, and so
on)

Often started with SS or VSS

All start with BKW or DMS

Avoid prefixes BKW and DMS.

IPC message
keys, event
keys, timer
userwords

Often started with SS or VSS

All start with BKW

Avoid prefix BKW.

Macro library
containing
SSASMxxx
bindings

VSSGPI MACLIB

DMSGPI MACLIB

Change the control file you
use for assemblies.

Macro library
containing
SSPLXxxx
bindings

VSSPLX MACLIB

DMSRP MACLIB

Change the control file you
use for compilations.

The reusable
server kernel
text library

VSS TXTLIB

BKWLIB TXTLIB

Change your GLOBAL TXTLIB
command.

© Copyright IBM Corp. 1999, 2001

501

Table 57 (Page 2 of 2). Differences Between Beta and GA Levels

Topic Beta GA Action

Supplementary PSL TXTLIB DMSPSLK TXTLIB Change your GLOBAL TXTLIB
text library command.

shipped with

the beta

Default names CMS filetypes started with CMS filetypes start with RSK Rename your files or adjust
for VSS PROFILE RSK

authorization

data files

Default name
for storage
group
configuration
file

DEFAULT VSSSGP A

DEFAULT RSKSGP A

Rename your file or adjust
PROFILE RSK

Default name
for user ID
mapping file

DEFAULT VSSUMAP =*

DEFAULT RSKUMAP =*

Rename your file or adjust
PROFILE RSK.

Exit name a
worker control
program should
use when it
issues HNDIUCV
SET

VSSWORK

RSKWORK

Default filetype
for request files
arriving for the
SPOOL line
driver

VSSRQST

RSKRQST

Change your client or
PROFILE RSK appropriately.

Default filetype
for response
files generated
the SPOOL line
driver

VSSRESP

RSKRESP

Change your client or
PROFILE RSK appropriately.

Message
repository file

VSSUME TEXT

BKWUME TEXT

Change the SET LANGUAGE
command your server
issues when it starts.

Runtime VSSRTE MODULE BKWRTE MODULE The old module is
environment incompatible and must be
manager replaced with the new one.
module

Message VSSccennnns BKWccennnns Probably nothing.
numbers

502 z/vM V3R1.0 RSK Programmer's Guide and Reference

Notices

IBM may not offer the products, services, or features
discussed in this document in all countries. Consult
your local IBM representative for information on the
products and services currently available in your area.
Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM
product, program, or service may be used. Any
functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility
to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications
covering subject matter described in this document.
The furnishing of this document does not give you any
license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS)
information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing,
to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the
United Kingdom or any other country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be
incorporated in new editions of the publication. 1BM
may make improvements and/or changes to the
product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1999, 2001

Any references in this information to non-IBM Web sites
are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites.
The materials at those Web sites are not part of the
materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of
information between independently created programs
and other programs (including this one) and (ii) the
mutual use of the information which has been
exchanged, should contact:

IBM Corporation

Mail Station P300,

522 South Road

Poughkeepsie, NY 12601-5400
U.S.A.

Attention: Information Request

Such information may be available, subject to
appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and
all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined
in a controlled environment. Therefore, the results
obtained in other operating environments may vary
significantly. Some measurements may have been
made on development-level systems and there is no
guarantee that these measurements will be the same
on generally available systems. Furthermore, some
measurement may have been estimated through
extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained
from the suppliers of those products, their published
announcements or other publicly available sources.
IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the
capabilities on non-IBM products should be addressed
to the suppliers of those products.

503

All statements regarding IBM's future direction or intent
are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information may contain examples of data and
reports used in daily business operations. To illustrate
them as completely as possible, the examples include
the names of individuals, companies, brands, and
products. All of these names are fictitious and any
similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application
programs in source language, which illustrates
programming techniques on various operating platforms.
You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the
purposes of developing, using, marketing or distributing
application programs conforming to IBM's application

504 z/vM V3R1.0 RSK Programmer's Guide and Reference

programming interfaces. These examples have not
been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Trademarks

The following terms are trademarks of the International
Business Machines Corporation in the United States, or
other countries, or both:

BookManager DFSMS

IBM IBMLink
Language Environment OpenEdition
OpenExtensions S/390
VM/ESA VTAM

zIVM

Other company, product, and service names may be
trademarks or service marks of others.

Glossary

A list of VM terms and their definitions is available If you are unfamiliar with the HELP Facility, you can
through the online HELP Facility. For example, to enter:

display the definition of “cms,” enter: help

help glossary cms to display the main HELP Menu, or enter:
You will enter the HELP Facility's online glossary file help cms help

and the definition of “cms” will be displayed as the
current line. When you are in the glossary file, you can
also search for other terms.

for information about the HELP command.
For more information about the HELP Facility, see the

z/VM: CMS User’s Guide. For more about the HELP
command, see the z/VM: CMS Command Reference.

© Copyright IBM Corp. 1999, 2001 505

506 z/VM V3R1.0 RSK Programmer's Guide and Reference

Bibliography

This bibliography lists the publications that provide
information about your z/VM system. The z/VM library
includes z/VM base publications, publications for
additional facilities included with z/VM, and publications
for z/VM optional features. For abstracts of z/VM
publications and information about current editions and
available publication formats, see z/VM: General
Information.

z/VM Base Publications

Evaluation

e z/VM: Licensed Program Specifications, GC24-5943
¢ z/VM: General Information, GC24-5944

Installation and Service

¢ z/VM: Installation Guide, GC24-5945
¢ z/VM: Service Guide, GC24-5946

¢ 7/VM: VMSES/E Introduction and Reference,
GC24-5947

Planning and Administration

¢ z/VVM: Planning and Administration, SC24-5948

e z/VM: CMS File Pool Planning, Administration, and
Operation, SC24-5949

¢ z/VM: Migration Guide, GC24-5928

¢ VM/ESA: REXX/EXEC Migration Tool for VM/ESA,
GC24-5752

¢ 7z/VM: Running Guest Operating Systems,
SC24-5950

¢ VM/ESA: Connectivity Planning, Administration, and
Operation, SC24-5756

e z/VM: Group Control System, SC24-5951
e z/VM: Performance, SC24-5952

Customization

e z/VM: CP Exit Customization, SC24-5953

Operation

e z/VM: System Operation, SC24-5954
e z/VM: Virtual Machine Operation, SC24-5955

© Copyright IBM Corp. 1999, 2001

Application Programming

e z/VM: CP Programming Services, SC24-5956

e 7z/VM: CMS Application Development Guide,
SC24-5957

¢ z/VVM: CMS Application Development Guide for
Assembler, SC24-5958

¢ z/VM: CMS Callable Services Reference,
SC24-5959

¢ z/VM: CMS Macros and Functions Reference,
SC24-5960

e z/VM: CMS Application Multitasking, SC24-5961
¢ VM/ESA: REXX/VM Primer, SC24-5598

¢ z/VM: REXX/VM User’s Guide, SC24-5962

e z/VM: REXX/VM Reference, SC24-5963

¢ z/VM: OpenExtensions POSIX Conformance
Document, GC24-5976

e z/VM: OpenExtensions User's Guide, SC24-5977

¢ 7z/VM: OpenExtensions Command Reference,
SC24-5978

¢ z/VVM: OpenExtensions Advanced Application
Programming Tools, SC24-5979

¢ z/\VVM: OpenExtensions Callable Services
Reference, SC24-5980

¢ |IBM z/VM: Reusable Server Kernel Programmer’s
Guide and Reference, SC24-5964

e z/VM: Enterprise Systems Architecture/Extended
Configuration Principles of Operation, SC24-5965

e C for VM/ESA: Library Reference, SC23-3908
¢ 0S/390: DFSMS Program Management, SC27-0806

¢ z/\VVM: Program Management Binder for CMS,
SC24-5934

¢ Debug Tool User's Guide and Reference,
SC09-2137

e External Security Interface (RACROUTE) Macro
Reference for MVS and VM, GC28-1366

¢ VM/ESA: Programmer’s Guide to the
Server-Requester Programming Interface for VM,
SC24-5455

¢ VM/ESA: CPlI Communications User's Guide,
SC24-5595

e Common Programming Interface Communications
Reference, SC26-4399

e Common Programming Interface Resource
Recovery Reference, SC31-6821

507

End Use
¢ z/VM: CP Command and Utility Reference,
SC24-5967
¢ VM/ESA: CMS Primer, SC24-5458
e 7/VM: CMS User’'s Guide, SC24-5968
¢ z/VM: CMS Command Reference, SC24-5969
e z/VVM: CMS Pipelines User’'s Guide, SC24-5970
e z/VM: CMS Pipelines Reference, SC24-5971
¢ CMS/TSO Pipelines: Author’'s Edition, SL26-0018
e z/VM: XEDIT User’s Guide, SC24-5972

¢ z/VM: XEDIT Command and Macro Reference,
SC24-5973

¢ z/VM: Quick Reference, SC24-5986

Diagnosis
¢ z/VVM: System Messages and Codes, GC24-5974
¢ z/VM: Diagnosis Guide, GC24-5975

e z/VM: VM Dump Tool, GC24-5887
¢ z/VM: Dump Viewing Facility, GC24-5966

Publications for Additional
Facilities

DFSMS/VM®

¢ VM/ESA: DFSMS/VM Function Level 221 Planning
Guide, GC35-0121

¢ VM/ESA: DFSMS/VM Function Level 221
Installation and Customization, SC26-4704

¢ VM/ESA: DFSMS/VM Function Level 221 Storage
Administration Guide and Reference, SH35-0111

¢ VM/ESA: DFSMS/VM Function Level 221
Removable Media Services User’s Guide and
Reference, SC35-0141

e VM/ESA: DFSMS/VM Function Level 221 Messages
and Codes, SC26-4707

¢ VM/ESA: DFSMS/VM Function Level 221 Diagnosis
Guide, LY27-9589

508 z/VvM V3R1.0 RSK Programmer's Guide and Reference

OSA/SF

¢ Planning for the System/390 Open Systems Adapter
Feature, GC23-3870

¢ VM/ESA: Open Systems Adapter Support Facility
User’'s Guide, SC28-1992

e S/390: Open Systems Adapter-Express Customer’s
Guide and Reference, SA22-7403

Language Environment®

¢ Language Environment for OS/390 & VM: Concepts
Guide, GC28-1945

¢ Language Environment for OS/390 & VM: Migration
Guide, SC28-1944

e Language Environment for 0S/390 & VM:
Programming Guide, SC28-1939

e Language Environment for 0S/390 & VM:
Programming Reference, SC28-1940

¢ Language Environment for OS/390 & VM: Writing
Interlanguage Communication Applications,
SC28-1943

¢ Language Environment for OS/390 & VM:
Debugging Guide and Run-Time Messages,
SC28-1942

Publications for Optional
Features

CMS Utilities Feature

* VM/ESA: CMS Utilities Feature, SC24-5535

TCP/IP Feature for VM/ESA
e z/VM: TCP/IP Level 3A0 Planning and
Customization, SC24-5981
e 7/VM: TCP/IP Level 3A0 User’'s Guide, SC24-5982

e |IBM z/VM: TCP/IP FL 3.2.0 Programmer’s
Reference, SC24-5983

e z/VM: TCP/IP Level 3A0 Messages and Codes,
GC24-5984

e z/VM: TCP/IP Level 3A0 Diagnosis Guide,
GC24-5985

OpenEdition® DCE Feature for
VM/ESA®

OpenkEdition DCE for VM/ESA: Introducing the
OpenEdition Distributed Computing Environment,

SC24-5735

¢ OpenkEdition DCE for VM/ESA: Planning,
SC24-5737

¢ OpenEdition DCE for VM/ESA: Configuring and

Getting Started, SC24-5734

e OpenkEdition DCE for VM/ESA: Administration
Guide, SC24-5730

e OpenEdition DCE for VM/ESA: Administration
Reference, SC24-5731

¢ OpenkEdition DCE for VM/ESA: Application
Development Guide, SC24-5732

¢ OpenEdition DCE for VM/ESA: Application
Development Reference, SC24-5733

e OpenEdition DCE for VM/ESA: User's Guide,
SC24-5738

¢ OpenkEdition DCE for VM/ESA: Messages and

Codes, SC24-5736

LAN Resource Extension and
Services/VM

¢ LAN Resource Extension and Services/VM:
Licensed Program Specifications, GC24-5617

* LAN Resource Extension and Services/VM: General

Information, GC24-5618

¢ LAN Resource Extension and Services/VM: Guide

and Reference, SC24-5622

CD-ROM

The following CD-ROM contains all the IBM libraries
that are available in IBM BookManager® format for
current VM system products and current IBM licensed

programs that run on VM. It also contains PDF

versions of z/VM publications and publications for some

related IBM licensed programs.

¢ Online Library Omnibus Edition: VM Collection,

SK2T-2067

Note: Only unlicensed publications are included.

Bibliography

509

510 z/vM V3R1.0 RSK Programmer's Guide and Reference

Index

A authorization function (continued)
ssAuthListClasses 233
allocate connection to worker machine 333 ssAuthListObjects 235
allocate memory 291 ssAuthModifyClass 238
anchor function ssAuthPermitUser 240
ssAnchorGet 220 ssAuthQueryObject 243
ssAnchorSet 222 ssAuthQueryRule 246
anchor word ssAuthTestOperations 250

setting and querying value 55
API Details 61

APPC service commands B
APPC LIST 87 basic concepts
APPC QUERY 88 reusable server kernel 1
APPC REPORT 89 bind service name to entry points 300
APPC START 90 bindings, language 437
APPC STOP 92 bring a storage group online 317
APPC/VM building a server module 10
using for connectivity 21
AUTH service commands C
AUTH CRECLASS 93
AUTH CREOBJECT 94 CACHE service commands
AUTH DELCLASS 95 CACHE CREATE 106
AUTH DELOBJECT 96 CACHE DELETE 107
AUTH DELUSER 97 CACHE LIST 108
AUTH LISTCLASS 98 calling
AUTH LISTOBJECT 99 entry points 8
AUTH MODCLASS 101 client function
AUTH PERMIT 102 ssClientDataGet 267
AUTH QOBJECT 103 ssClientDatalnit 269
AUTH RELOAD 104 ssClientDataPut 271
authorization ssClientDataTerm 273
activating 47 close cached file 255
administrative commands 46 CMS minidisks
database using 44
initialize 44 CMS service commands
storage 43 CMS 109
entry points 42 CMS Shared File System (SFS)
group 43 using 45
naming conventions 42 CMSSTOR facility
on minidisks 44 storage management 57
other services 46 commands
overview 41 APPC LIST 87
stopping and starting service 29 APPC QUERY 88
authorization files APPC REPORT 89
on CMS minidisks 44 APPC START 90
on Shared File System (SFS) 45 APPC STOP 92
authorization function AUTH CRECLASS 93
ssAuthCreateClass 223 AUTH CREOBJECT 94
ssAuthCreateObject 225 AUTH DELCLASS 95
ssAuthDeleteClass 227 AUTH DELOBJECT 96
ssAuthDeleteObject 229 AUTH DELUSER 97
ssAuthDeleteUser 231 AUTH LISTCLASS 98

© Copyright IBM Corp. 1999, 2001 511

512

commands (continued)

AUTH LISTOBJECT 99

AUTH MODCLASS 101

AUTH PERMIT 102

AUTH QOBJECT 103

AUTH RELOAD 104

BKWENRCP 105

CACHE CREATE 106

CACHE DELETE 107

CACHE LIST 108

CMS 109

CONFIG AUT_CACHE 110
CONFIG AUT_DATA 1 111
CONFIG AUT_DATA 2 112
CONFIG AUT_FREE 113

CONFIG AUT_INDEX_1 114
CONFIG AUT_INDEX_2 115
CONFIG AUT_LOCATION 116
CONFIG AUT_LOG 117

CONFIG AUTHCHECK_AUTH 118
CONFIG AUTHCHECK_CACHE 119
CONFIG AUTHCHECK_CMS 120
CONFIG AUTHCHECK_CONFIG 121
CONFIG AUTHCHECK_CP 122
CONFIG AUTHCHECK_ENROLL 123
CONFIG AUTHCHECK_LD 124
CONFIG AUTHCHECK_MONITOR 125
CONFIG AUTHCHECK_SERVER 126
CONFIG AUTHCHECK_SGP 127
CONFIG AUTHCHECK_TRIE 128
CONFIG AUTHCHECK_USERID 129
CONFIG AUTHCHECK_WORKER 130
CONFIG MEM_MAXFREE 131
CONFIG MON_KERNEL_ROWS 132
CONFIG MON_PRODUCT_ID 133
CONFIG MON_USER_SIZE 134
CONFIG MSG_NOHDR 135
CONFIG NOMAP_APPC 136
CONFIG NOMAP_IUCV 137
CONFIG NOMAP_MSG 138
CONFIG NOMAP_SPOOL 139
CONFIG NOMAP_TCP 140
CONFIG NOMAP_UDP 141
CONFIG RSCS_USERID 142
CONFIG SGP_FILE 143

CONFIG SPL_CATCHER 144
CONFIG SPL_INPUT_FT 145
CONFIG SPL_OUTPUT_FT 146
CONFIG SRV_THREADS 147
CONFIG UMAP_FILE 148

CONFIG VM_CONSOLE 149
CONFIG VM_MSG 150

CONFIG VM_SPOOL 151

CONFIG VM_SUBCOM 152
CONSOLE LIST 153

CONSOLE QUERY 154

z/VM V3R1.0 RSK Programmer's Guide and Reference

commands (continued)

CONSOLE START 155
CONSOLE STOP 156
CP 157

ENROLL COMMIT 158
ENROLL DROP 159
ENROLL GET 160
ENROLL INSERT 161
ENROLL LIST 162
ENROLL LOAD 163
ENROLL RECLIST 164
ENROLL REMOVE 165
issuing to line drivers 26
IUCV LIST 166

IUCV QUERY 167
IUCV REPORT 168
IUCV START 169
IUCV STOP 170
MONITOR DISPLAY 171
MONITOR USER 172
MSG LIST 173

MSG QUERY 174
MSG START 175

MSG STOP 176
SERVER MONITOR 178
SERVER SERVICES 177
SERVER STOP 179
SGP CREATE 180
SGP DELETE 181
SGP LIST 182

SGP MDLIST 183

SGP START 184

SGP STOP 185
SPOOL LIST 186
SPOOL QUERY 187
SPOOL START 188
SPOOL STOP 189
SUBCOM LIST 190
SUBCOM QUERY 191
SUBCOM START 192
SUBCOM STOP 193
TCP LIST 194

TCP QUERY 195

TCP REPORT 196
TCP START 197

TCP STOP 199

TRIE LIST 200

UDP LIST 201

UDP QUERY 202

UDP REPORT 203
UDP START 204

UDP STOP 206
USERID MAP 207
USERID RELOAD 208
WORKER ADD 209
WORKER CLASSES 210

commands (continued)
WORKER DELCLASS 211
WORKER DELETE 212
WORKER DISTRIBUTE 213
WORKER MACHINES 214
WORKER RESET 216
WORKER STATUS 217

commit enroliment set 274

CONFIG service commands
CONFIG AUT_CACHE 110
CONFIG AUT_DATA_1 111
CONFIG AUT _DATA 2 112
CONFIG AUT_FREE 113
CONFIG AUT_INDEX_1 114
CONFIG AUT_INDEX_2 115
CONFIG AUT_LOCATION 116
CONFIG AUT_LOG 117
CONFIG AUTHCHECK_AUTH 118
CONFIG AUTHCHECK_CACHE 119
CONFIG AUTHCHECK_CMS 120
CONFIG AUTHCHECK_CONFIG 121
CONFIG AUTHCHECK_CP 122
CONFIG AUTHCHECK_ENROLL 123
CONFIG AUTHCHECK_LD 124
CONFIG AUTHCHECK_MONITOR 125
CONFIG AUTHCHECK_SERVER 126
CONFIG AUTHCHECK_SGP 127
CONFIG AUTHCHECK_TRIE 128
CONFIG AUTHCHECK_USERID 129
CONFIG AUTHCHECK_WORKER 130
CONFIG MEM_MAXFREE 131
CONFIG MON_KERNEL_ROWS 132
CONFIG MON_PRODUCT_ID 133
CONFIG MON_USER_SIZE 134
CONFIG MSG_NOHDR 135
CONFIG NOMAP_APPC 136
CONFIG NOMAP_IUCV 137
CONFIG NOMAP_MSG 138
CONFIG NOMAP_SPOOL 139
CONFIG NOMAP_TCP 140
CONFIG NOMAP_UDP 141
CONFIG RSCS_USERID 142
CONFIG SGP_FILE 143
CONFIG SPL_CATCHER 144
CONFIG SPL_INPUT_FT 145
CONFIG SPL_OUTPUT_FT 146
CONFIG SRV_THREADS 147
CONFIG UMAP_FILE 148
CONFIG VM_CONSOLE 149
CONFIG VM_MSG 150
CONFIG VM_SPOOL 151
CONFIG VM_SUBCOM 152

configuation parameters 74

configuation variables 75

configuring the server 71

connectivity
APPC/VM 21
IUCV 20
line driver 13
MSG/SMSG commands 23
spool file 22
subcom 25
TCP/IP 18
UDP/IP 19
virtual console 24
console line driver 27
CONSOLE service commands
CONSOLE LIST 153
CONSOLE QUERY 154
CONSOLE START 155
CONSOLE STOP 156
CP service commands 157
create a storage group 304
create a trie 324
create cache 252
create data space 293
create object 225
create object class 223

D

delete
aclass 227
a storage group 306
auser 231
an object 229
cache 254
subpool 295
delete a trie 326
Distributing Worker Machines 61
drop enrollment set 276

E

ENROLL service commands
BKWENRCP 105
ENROLL COMMIT 158
ENROLL DROP 159
ENROLL GET 160
ENROLL INSERT 161
ENROLL LIST 162
ENROLL LOAD 163
ENROLL RECLIST 164
ENROLL REMOVE 165

enroliment function
ssEnrollCommit 274
ssEnrollDrop 276
ssEnrollList 278
ssEnrollLoad 280
ssEnrollRecordGet 283
ssEnrollRecordInsert 285

Index

513

enrollment function (continued)

ssEnrollRecordList 287
ssEnrollRecordRemove 289

entry point

execution of reusable server kernel

F

authorization 42
calling 8
initialization 7
RSKMAIN 71
service 7

find a storage group 308
find service by name 302

flow of control, reusable server kernel

Functional Overview 59
functions

514

ssAnchorGet 220
ssAnchorSet 222
ssAuthCreateClass 223
ssAuthCreateObject 225
ssAuthDeleteClass 227
ssAuthDeleteObject 229
ssAuthDeleteUser 231
ssAuthListClasses 233
ssAuthListObjects 235
ssAuthModifyClass 238
ssAuthPermitUser 240
ssAuthQueryObject 243
ssAuthQueryRule 246
ssAuthReload 248
ssAuthTestOperations 250
ssCacheCreate 252
ssCacheDelete 254
ssCacheFileClose 255
ssCacheFileOpen 256
ssCacheFileRead 261
ssCacheQuery 263
ssCacheXI|TabSet 265
ssClientDataGet 267
ssClientDatalnit 269
ssClientDataPut 271
ssClientDataTerm 273
ssEnrollCommit 274
ssEnrollDrop 276
ssEnrollList 278
ssEnrollLoad 280
ssEnrollRecordGet 283
ssEnrollRecordInsert 285
ssEnrollRecordList 287
ssEnrollRecordRemove 289
ssMemoryAllocate 291
ssMemoryCreateDS 293
ssMemoryDelete 295
ssMemoryRelease 296

z/VM V3R1.0 RSK Programmer's Guide and Reference

functions (continued)

ssServerRun 298
ssServerStop 299
ssServiceBind 300
ssServiceFind 302
ssSgpCreate 304
ssSgpDelete 306
ssSgpFind 308
ssSgpList 310
ssSgpQuery 312
ssSgpRead 315
ssSgpStart 317
ssSgpStop 320
ssSgpWrite 322
ssTrieCreate 324
ssTrieDelete 326
ssTrieRecordinsert 327
ssTrieRecordList 329
ssUseridMap 331
ssWorkerAllocate 333

G

get data from client buffers 267
get enrollment record 283
get value of anchor word 220
glossary information 505

group
authorization 43

indexes
example 53
lookup by prefix 53
sharing 54
indexing 53
initialization entry point 7
initialize client buffers 269
initializing
the server 71
insert enrollment record 285
insert record into trie 327
IUCV
using for connectivity 20
IUCV service commands
IUCV LIST 166
IUCV QUERY 167
IUCV REPORT 168
IUCV START 169
IUCV STOP 170

L

language bindings
assembler
anchor 437

language bindings (continued)
assembler (continued)
authorization 439
cache 445
client 449
enroliment 451
memory 456
services 463
storage group 458
trie 467
user ID 469
worker 471
PL/X
anchor 473
authorization 474
cache 479
client 482
enroliment 484
memory 487
services 492
storage group 488
trie 495
user ID 496
worker 497
line driver
connectivity 13
console 27
control block 14
organization 13
routing data 26
self-sourced 27
TCP/IP 26
writing your own 27
list all storage groups 310
list classes 233
list enrollment sets 278
list matching records 329
list objects in class 235

list records in enroliment set 287

list tries 200
load enroliment set 280

M

mapping file, user ID 78
memory function
ssMemoryAllocate 291
ssMemoryCreateDS 293
ssMemoryDelete 295
ssMemoryRelease 296
migrate
between repositories 45
minidisks
using 44
modify object class 238

MONITOR service commands
MONITOR DISPLAY 171
MONITOR USER 172

MSG/SMSG commands
connectivity 23
console line driver 27
TCP/IP line driver 26

MSG/SMSG service commands
MSG LIST 173
MSG QUERY 174
MSG START 175
MSG STOP 176

N

naming convention
authorization 42

O

open cached file 256
Operator Commands 63

P

parameters, configuration 74
permit a user 240
PLXSOCK 340
procedure
entry 67
assembler 67
conventions 67
PL/X 67
register content 67
exit 67
assembler 67
conventions 67
PL/X 67
produce a mapped user ID 331
PROFILE RSK exec 71, 72
put data to client buffers 271

Q

query a specific storage group 312
query a user's authorizations 246
query an object 243

query cache 263

R

read blocks from a storage group 315
read cached file 261
release memory 296
remove enrollment record 289
repository

migrating authorization data 45

Index

515

reserved names 395
reset internal authorization engine 248
reusable server kernel
basic concepts 1
configuring 71
execution 71
functions 337
initializing 71
line driver 26
programming with sockets 338
data structures 340
querying value
of anchor word 55
restrictions 339
setting value
of anchor word 55
storage group 78
RSKMAIN 71
run the server 298
run-time anchor block (RAB) 65

S

self-sourced line driver 27
server
initialization 6
mainline 5
program 4
Server Configuration Considerations 60
server function
ssServerRun 298
ssServerStop 299
server module
building 10
SERVER service commands
SERVER MONITOR 178
SERVER SERVICES 177
SERVER STOP 179
service
authorization 29
console line driver 27
starting and stopping 25
service entry point 7
service function
ssServiceBind 300
ssServiceFind 302
set translation table 265
set value of anchor word 222
SGP service commands
SGP CREATE 180
SGP DELETE 181
SGP LIST 182
SGP MDLIST 183
SGP START 184
SGP STOP 185

516 z/VvM V3R1.0 RSK Programmer's Guide and Reference

Shared File System (SFS)
using 45
socket calls
PS_accept 342
PS_applinit 343
PS_applterm 345
PS_async_read 346
PS_async_recv 348
PS_async_sendto 350
PS_async_write 352
PS_bind 354
PS_cancel 355
PS _close 356
PS _connect 357
PS_gethostid 358
PS_getpeername 359
PS_getsockname 360
PS_getsockopt 361
PS ioctl 362
PS_libinit 364
PS libterm 366
PS listen 367
PS read 368
PS recvfrom 369
PS select 371
PS_sendto 373
PS_setsockopt 375
PS_shutdown 376
PS_socket 377
PS_write 378
sockets
functions 337
spool file
using for connectivity 22
SPOOL service commands
SPOOL LIST 186
SPOOL QUERY 187
SPOOL START 188
SPOOL STOP 189
starting and stopping service 25
stop the server 299
storage function
ssSgpCreate 304
ssSgpDelete 306
ssSgpFind 308
ssSgpList 310
ssSgpQuery 312
ssSgpRead 315
ssSgpStart 317
ssSgpStop 320
ssSgpWrite 322
storage group
reusable server kernel 78
storage management
using CMSSTOR facility 57

subcom WORKER service commands (continued)

connectivity 25 WORKER DELETE 212
SUBCOM service commands WORKER DISTRIBUTE 213
SUBCOM LIST 190 WORKER MACHINES 214
SUBCOM QUERY 191 WORKER RESET 216
SUBCOM START 192 WORKER STATUS 217
SUBCOM STOP 193 write blocks to a storage group 322

Writing a Worker Machine Program 64

T

take a storage group offline 320
TCP service commands
TCP LIST 194
TCP QUERY 195
TCP REPORT 196
TCP START 197
TCP STOP 199
TCP/IP
using for connectivity 18
terminate client buffers 273
test a user's access rights 250
The Worker C-Block 62
trie function
ssTrieCreate 324
ssTrieDelete 326
ssTrieRecordinsert 327
ssTrieRecordList 329
TRIE service commands
TRIE LIST 200

U

UDP service commands
UDP LIST 201
UDP QUERY 202
UDP REPORT 203
UDP START 204
UDP STOP 206
user ID mapping file 78
USERID service commands
USERID MAP 207
USERID RELOAD 208

V

variables, configuration 75
virtual console
connectivity 24

W

What's Changed Since the Beta 501

Worker Machines 59

WORKER service commands
WORKER ADD 209
WORKER CLASSES 210
WORKER DELCLASS 211

Index

517

Communicating Your Comments to IBM

Reusable Server Kernel
Programmer's Guide and
Reference

Version 3 Release 1.0

Publication No. SC24-5964-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

e If you prefer to send comments by mail, use the RCF at the back of this book.
e If you prefer to send comments by FAX, use this number:
1-607-752-2327 (US and Canada)
e If you prefer to send comments electronically, use this network ID:
— pubrcf@vnet.ibm.com
— USIB2L8Z@IBMMAIL
Make sure to include the following in your note:

e Title and publication number of this book
e Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

Reusable Server Kernel
Programmer's Guide and
Reference

Version 3 Release 1.0

Publication No. SC24-5964-00

Overall, how satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Overall satisfaction O O O m] u}
How satisfied are you that the information in this book is:
Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Accurate O O O m] O
Complete O O O m] m]
Easy to find O O O m] O
Easy to understand O O O m] O
Well organized O O O m] m]
Applicable to your tasks O O O m] O

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? O Yes O No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments

in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers' Comments — We'd Like to Hear from You

SC24-5964-00

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development
Department G60G

1701 North Street

Endicott, New York 13760-5553

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC24-5964-00

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370/S390-00
Program Number: 5654-A17

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

Spine information:

==5Z z/VM Reusable Server Kernel Version 3 Release 1.0

